ZeptoWard is a Machine Learning solution (AI) which identifies the ADMET properties of compounds. It can accurately predict over 80 properties related to absorption, distribution, metabolism, excretion, and toxicity properties, how a specific compound or combination of compounds will perform. It can

Last updated on: 21-03-2023 - 13:34

Contact: Segolene Martin
Organisation: Kantify
Status: Published in peer reviewed journal
Generally, our research group aims to study the influence of food parameters (food design, food processing, food composition) on the digestive kinetics of diverse nutrients throughout the upper gastrointestinal tract. For this, we use in vitro digestion protocols. The current method is a semi

Last updated on: 15-02-2023 - 16:08

Contact: Tara Grauwet
Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal
Full-wave electromagnetic (EM) simulations solve the laws of Maxwell for a given problem. When designing a wireless solution for an Internet of Animal Health (IoAH) application, multiple iterations are needed to achieve well-defined metrics such as energy efficiency, electrical and mechanical

Last updated on: 13-02-2023 - 16:48

Contact: Jasper Goethals
Organisation: Ghent University (UGent)
Partners: Ghent University (UGent)
Status: Internally validated
Computational neuroscience aims to study the nervous system by mathematical and computer simulations. Computational models can be built on multilevel scales. With the bottom-up approach, the model is built from the same building blocks as observed in human or animal tissue. As such, the functioning

Last updated on: 13-02-2023 - 16:45

Contact: Cannot be disclosed
Organisation: Ghent University (UGent)
Status: Still in development, Published in peer reviewed journal
We devised a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSC and then to differentiate them into air-liquid interface bronchial epithelium (iALI) within 45 days. Of note, this method does not involve any cell sorting step. We reprogrammed blood cells from

Last updated on: 07-02-2023 - 14:46

Contact: Engi Ahmed
Organisation: VIB - UGent, IRMB INSERM 1183
Status: History of use, Internally validated, Published in peer reviewed journal
The purpose of the present development is to use avian MoDCs to implement a cellular platform to increase understanding of the immune responses induced by various antigens of interest (e.g. vaccine candidates) and evaluate their immunogenic potential. Considering the difficulty to work on dendritic

Last updated on: 03-02-2023 - 08:51

Contact: Fiona Ingrao
Organisation: Sciensano
Status: Still in development
Ex-vivo tissue explants (precision cut tissue slices) prepared with the Krumdieck Tissue Slicer are living, three-dimensional tissue slices closely resemble the organ from which it is prepared, with all the cell types present in their original tissue-matrix configuration where physiological and

Last updated on: 31-01-2023 - 15:52

Contact: Bella Manshian
Organisation: Katholieke Universiteit Leuven (KUL)
Human Intestinal Organoids (HIOs) are in vitro 3D cell cultures arranged in a crypt-villus structure that incorporate many physiological features of the intestinal epithelium, including the presence of different cell populations (enterocytes, goblet cells, enteroendocrine and Paneth cells). HIOs can

Last updated on: 27-01-2023 - 13:29

Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes. Despite the big burden, there is no effective treatment to restore tendon’s natural composition, due to a lack of understanding of fundamental cell biology. Additionally, translation of novel

Last updated on: 17-01-2023 - 16:22

Organisation: Ghent University (UGent)
Status: Still in development
Intestinal organoids are cultured from intestinal biopsies obtained during routine endoscopy. The stem cell containing crypts are isolated and cultured in a 3D ECM (Matrigel) in the presence of the desired growth factors. The present stem cells will expand and give rise to all epithelial cells of

Last updated on: 11-01-2023 - 16:43

Contact: Bram Verstockt
Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal