Full-wave electromagnetic (EM) simulations solve the laws of Maxwell for a given problem. When designing a wireless solution for an Internet of Animal Health (IoAH) application, multiple iterations are needed to achieve well-defined metrics such as energy efficiency, electrical and mechanical

Last updated on: 13-02-2023 - 16:48

Contact: Jasper Goethals
Organisation: Ghent University (UGent)
Partners: Ghent University (UGent)
Status: Internally validated
Computational neuroscience aims to study the nervous system by mathematical and computer simulations. Computational models can be built on multilevel scales. With the bottom-up approach, the model is built from the same building blocks as observed in human or animal tissue. As such, the functioning

Last updated on: 13-02-2023 - 16:45

Contact: Cannot be disclosed
Organisation: Ghent University (UGent)
Status: Still in development, Published in peer reviewed journal
For the risk assessment of compounds migrating from food contact materials (FCM), information on the exposure to the migrant as well as its possible hazards is needed. To support the evaluation of both starting products and NIAS from plastic FCM, the VERMEER FCM tool has been developed within the

Last updated on: 29-11-2022 - 14:46

Organisation: Sciensano
Status: Internally validated
In silico tools are computer-assisted methodologies with a high-throughput that allow to predict the toxic potential of compounds without experimental testing. Consequently, in silico tools are time-, cost- and animal-saving in nature. The most commonly used methods are (quantitative) structure

Last updated on: 24-03-2022 - 11:25

Contact: Birgit Mertens
Organisation: Sciensano
Status: Published in peer reviewed journal
This is a mathematical compartmental formulation of dose-effect synergy modelling for multiple therapies in Non Small Cell Lung Cancer (NSCLC): antiangiogenic, immuno- and radiotherapy. The model formulates the dose-effect relationship in a unified context, with tumor proliferating rates and

Last updated on: 01-02-2021 - 14:32

Organisation: Ghent University (UGent)
Status: Published in peer reviewed journal
Computational Fluid Dynamics (CFD) is being applied to characterize the fluid flow in different applications. CFD has obtained significant interest in both the medical and engineering community because of its non-invasive character. It can predict the fluid flow characteristics when one or multiple

Last updated on: 10-04-2020 - 09:22

Organisation: Ghent University (UGent)
Status: Still in development, Published in peer reviewed journal
The scope of our research ranges from the study of flow and transport processes in blood and biological fluids in the cardiovascular system and artificial organs to biomechanical aspects of the cardiovascular and the skeleto-muscular system and medical devices. All research tracks explored by our

Last updated on: 08-11-2019 - 11:02

Contact: Patrick Segers
Organisation: Ghent University (UGent)