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ABSTRACT

Chronic pain affects approximately 20% of the population, significantly impacting daily life and increasing psychosocial burden
for patients due to the limited effect of analgesics in providing reliable pain relief. This clinical impediment is largely due to a
limited mechanistic understanding of human pain pathophysiology, caused by the limitation of models to study human pain
mechanisms. Further, the lack of reliable models to study human pain-associated mechanisms hinders the screening and evalua-
tion of pain-related drugs and therapies, leading to significant obstacles in the development of pain medications without inducing
unwanted side effects. More complex and physiologically relevant in vitro models provide an opportunity to study human cells
and tissues in a controlled environment while replicating key aspects of the native human environment. Further, these models
are ethically advantageous by serving the 3R principle and enable the direct study of human cells and their physiological envi-
ronments, facilitating the development of translational findings. In this review, we present the key molecular mechanisms of
the pain sensory process, highlight the bidirectional crosstalk between nociceptors and non-neuronal cells at the peripheral and
central nervous system levels, discuss the current in vivo models and their drawbacks, and explore strategies for human-relevant
modeling by generating human nociceptors in vitro through various differentiation protocols of induced pluripotent stem cells
(iPSCs). We also review the state-of-the-art of in vitro pain model systems, including their electrophysiological characterization,
compartmentalization strategies, and the use of agonist and antagonist assays targeting specific ion channels and receptors to
validate these models. Additionally, we examine pain coculture model strategies that more closely replicate in vivo peripheral
and central microenvironments. Finally, we discuss the current limitations and future perspectives of enhancing the physio-
logical relevance and predictability of in vitro pain models for the development of novel analgesics and deepening mechanistic
understanding.

1 | The Multi-Faceted Nature of Pain

Pain constitutes an unpleasant sensory and emotional encoun-
ter linked to real or potential tissue harm, evolutionary devel-
oped to serve as a protective mechanism. Clearly, pain sensing
allows an individual to retreat from hazardous situations upon

sensing a harmful stimulus, but it becomes a significant burden
during chronic conditions. The pain sensing mechanism is me-
diated by cellular signaling networks of the peripheral nervous
system (PNS) which is processed by the central nervous system
(CNS) [1]. Pain can be divided into two states: acute and chronic.
Acute pain is a temporary sensation following tissue damage,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2025 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.

The FASEB Journal, 2025; 39:¢70914
https://doi.org/10.1096/1j.202501025RR

1 of 29


https://doi.org/10.1096/fj.202501025RR
https://doi.org/10.1096/fj.202501025RR
mailto:
mailto:johanna.bolander@imec.be
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1096%2Ffj.202501025RR&domain=pdf&date_stamp=2025-08-15

irritation, or perturbation, such as after surgery or injury. In
contrast, chronic pain is an enduring and dysfunctional state
that heightens sensitivity to sensory stimuli, originating from
irregular functioning of the nervous system, resulting in pain
persisting well beyond the healing of the initial injury or pain
inducing event, lasting for months or even years [2].

Chronic pain is a global phenomenon affecting over 1in 5 people
in the world [3]. Beyond the unpleasant sensation patients re-
tain, the consequences of chronic pain are far-reaching, includ-
ing significant decrease in quality of life, work incapacity, loss
of income, psychological disorders such as depression, an in-
creased risk for suicide, anxiety, and substance addiction [4, 5].
Pain and its related disorders present high costs for global econ-
omies, with estimated direct and indirect healthcare costs of
around $600 billion annually [6].

Chronic pain can be linked to different underlying pathologies
and distinct clinical conditions like cancer, internal organ dam-
age, neck/back/joint/muscle pain, and failed regeneration [5].
Further, chronic pain can be classified into two broad catego-
ries: nociceptive pain and neuropathic pain, both affected by the
inflammatory status of the local and systemic environment [7].
While neuropathic pain refers to pain caused by lesions or dis-
eases affecting the sensory nervous system [8], nociceptive pain
represents the response to a noxious stimulus. The mechanisms
between these two pains differ, and due to the prevalence of no-
ciceptive pain and the potential of human in vitro models in this
domain, it will be the focus of this review [9]. Specifically, no-
ciceptive pain arises from defined tissue damage, irritation, or
dysfunction, for example, skin burns, muscle strains, bone frac-
tures, or joint trauma [8]. One of the common and significant
causes of chronic nociceptive pain is osteoarthritis (OA) [10],
a degenerative disease affecting over 590 million adults world-
wide, characterized by joint inflammation, chronic pain, lim-
ited mobility, and decreased quality of life [11]. While healthy
articular cartilage is avascular and aneural (characteristics that
support frictionless and pain-free joint movement), one of the
hallmark features of OA pathology is the aberrant vasculariza-
tion and innervation of the degenerating cartilage, contributing
to nociceptive pain, and thus chronic pain in OA patients due to
a lack of disease-modifying therapeutics [12].

In chronic pain-related diseases such as OA, nociceptive pain
presents a multifaceted interplay of psychological and physio-
logical elements, engaging a variety of cells and tissues. This
complexity represents a major challenge for scientists and clini-
cians aiming to develop effective treatments for patients. Despite
extensive research efforts, holistic mechanisms underlying pain
remain elusive, resulting in persistent prevalence of chronic
pain among patients due to poor treatment options.

2 | Current Treatment Alternatives

To tackle chronic nociceptive pain, healthcare professionals
aim to identify and treat the cause, which is often complex and
therefore results in prescribed pain-relieving treatments focused
on managing symptoms rather than achieving a cure. Wearable
medical devices as treatment are currently increasing in pop-
ularity, including transcutaneous electrical nerve stimulation

to treat OA-associated pain [13]. However, the use of wearables
remains a niche, and the technology is still in development and
hampered by side effects due to non-targeted stimulation of
nerve fibers [14]. That said, emerging afferent current stimula-
tion techniques show promise by enabling more precise target-
ing of nerve pathways [15]. Nevertheless, the market for these
devices remains small compared to the pain drug treatment
sector, valued at approximately $7 billion versus $78 billion, re-
spectively [16, 17].

Pharmacological approaches dominate the pain management
landscape. Analgesics, that is, pain relief drugs, include both
non-opioid and opioid alternatives. Non-opioids are generally
over-the-counter drugs such as paracetamol (acetaminophen) or
non-steroidal anti-inflammatory drugs (NSAIDs) like aspirin,
targeting and inhibiting the cyclooxygenase (COX) enzymes
involved in the synthesis of the inflammatory mediator prosta-
glandin during the inflammatory process of painful events [18].
The efficacy of non-opioids has been proven for mild to moder-
ate pain, but they do not provide sufficient relief for more intense
pain and are associated with side effects such as gastrointestinal
disorders like ulcers and, in case of overdose, acute liver fail-
ure [19].

Opioids are typically the next line of prescribed drugs to address
severe pain and include substances ranging from legally pre-
scribed pain relievers like oxycodone, codeine, and morphine to
illicit drugs like heroin and fentanyl [20]. Opioids function by
targeting specific opioid receptors on nociceptors, causing a dis-
ruption of the pain signals between the PNS and CNS [21]. This
results in the patient experiencing a reduction in the sensation
of pain. However, opioids not only affect nociceptive circuits but
also other signaling circuits expressing opioid receptors, includ-
ing the CNS and therefore causing a range of adverse effects like
personality change, dysphoria, euphoria, and respiratory and
cardiovascular disorders [22]. Further, clear evidence indicates
that patients taking opioids long-term are at an increased risk
of opioid tolerance and dependence, with a significant risk of
overdose. Despite these risks, opioids continue to be heavily lob-
bied and prescribed, contributing to an ongoing opioid addiction
epidemic with millions of deaths associated [23, 24].

Consequently, the quest for effective pain medication alter-
natives without significant undesirable side effects persists.
However, the current consensus related to mechanistic research
and drug development states that the challenge lies not in the
scarcity of pain drug candidates but in their complexity and
reliability of testing. As a result, targeting specific peripheral
nervous tissue could potentially achieve an elevated safety and
efficacy profile compared to targeting the entire body [25]. To
achieve this, innovative and sophisticated models to study and
test the efficacy on peripheral neurons and their local environ-
ment are needed to develop new pain drugs to meet the clini-
cal need.

3 | The Role of the Nervous System in Pain
Sensitization

The pathways involved in the nociceptive pain mechanism
include local tissues and organs throughout the body where
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sensitization occurs, the PNS, which comprises neuronal cell
bodies and nerves that extend from the spinal cord to innervate
various parts of the body and transmit pain signals, and the
CNS, consisting of the brain and spinal cord, which integrates
these signals through neural circuits, modulates the percep-
tion of pain, and coordinates appropriate responses [26]. The
nervous system's fundamental unit is the neuronal cell, firing
electrical signals and transmitting them via synapses upon ac-
tivation. Within the CNS, neurons form complex circuits and
networks. Conversely, in the PNS, neurons are organized into
ganglia containing cell bodies and nerve bundles, surrounded
by connective tissue. Among PNS neurons are sensory neurons,
specialized in sensing external stimuli such as heat, light, pres-
sure, and pain. These sensory neurons constitute the afferent
nerves of the PNS, and their sensitization allows them to trans-
mit the message of external stimuli to the CNS for processing of
the information [27].

3.1 | Pain Sensing Nociceptors

Nociceptors are specialized sensory neurons responsible for
transducing noxious stimuli into action potentials (AP) en-
abling pain sensitization, and two main classes of nociceptors
exist: small diameter myelinated and unmyelinated sensory
neurons. The myelinated are known as Ad nociceptors and
transmit fast and intense pain due to myelin (a lipid-rich
material) insulation that enhances conductivity. The small-
diameter unmyelinated sensory neurons are known as C
nociceptors and encode slow aching pain; they represent the
majority of the nociceptors in the PNS [28]. Nociceptors have a
pseudounipolar structure, where their axons bifurcate into two
branches: a peripheral and a central branch. The peripheral
branch terminates in free nerve endings and densely inner-
vates peripheral tissues such as the skin, the joints, the respi-
ratory system, and the gastrointestinal tract [29]. Nociceptors
can respond to mechanical, biochemical, and thermal noxious
stimuli or any kind of stimuli on these tissues by converting
them into electrical signals through a process called trans-
duction [30]. The cell bodies of nociceptors are hosted in the
dorsal root ganglion (DRG), while their central branches of
the axon continue to carry the electrical signal and terminate
in the dorsal horn (DH) of the spinal cord. Here, nociceptors
form synapses with second-order DH neurons to transmit pain
signals within the CNS, leading to the perception of pain in
the brain [30]. The current pharmacologic treatments can act
at multiple points along the pain pathway, including targeting
the transduction at the peripheral tissue level, the transmis-
sion in the spinal cord, or the perception step in the brain [31].
Specifically, one crucial aspect is to distinguish nociception,
which denotes the electrical signal propagation and modula-
tion in the nervous system, from pain, which represents the
final perception of the unpleasant experience [32].

3.2 | Peripheral Pain Molecular Mechanisms

The pain signaling stimulus causes an activation of the free
endings of the nociceptors in the local pain environment,
leading to an alteration of the membrane potential and sub-
sequent AP generation. AP generation can occur through

two primary interconnected mechanisms: (1) activation due
to noxious stimuli via ion channels or (2) modulation via in-
flammatory mediators and receptors, both resulting in a flux
of cations across the membrane causing the AP generation.
Subsequently, if the membrane potential reaches a certain
threshold, the initial signal is amplified and transmitted along
the axon to the spinal cord, resulting in pain perception in the
brain [33].

Nociceptors encode the initial pain stimuli into electrical signals
through an array of ion channels at their endings in peripheral
tissues, with each channel responding to different types of nox-
ious stimuli (Figure 1A). The transient receptor potential (TRP)
family includes TRPV1, an ion channel activated by noxious
heat and capsaicin while TRPA1 and TRMPS8 channels sense
noxious cold and chemical compounds like menthol, allyl iso-
thiocyanate or cinnamaldehyde [34].

Acid-sensing ion channels (ASIC) represent another family of
ion channels for nociception and are activated in low pH con-
ditions (Figure 1A). Physiologically acidic conditions can occur
due to low blood oxygen, fatiguing exercise, or inflammatory
conditions [35]. Nociceptive pain can also be elicited by mechan-
ical stimulation, causing deformation of the cellular membrane
of the nociceptor, which activates a cellular response by regu-
lating the flux of cation through mechanosensitive ion channels
[36] (Figure 1A). Piezol and Piezo2 have recently been identified
as specific mechanosensitive ion channels [37], where Piezol is
more expressed in mechanically stimulated tissue cells (e.g.,
muscle [38], bone [39] or cardiac cells [40]), while Piezo2 is more
prominent in DRG sensory neurons [37]. Further, recent discov-
eries highlight the essential role of TACAN ion channels in a
certain subset of nociceptors, as TACAN channels appear to be
more sensitive to high-threshold painful mechanical stimuli,
contrasting with Piezo ion channels, which have been identified
for lower threshold stimuli [41]. It is also reported that nocicep-
tors have adenosine triphosphate (ATP)-responsive ion channels
from the purinergic receptor (P2X) family, with the P2X3 sub-
type commonly found in sensory neurons. The P2X family of
channels can be activated by ATP releases from the cytosol of
damaged non-neuronal cells due to stress, including mechani-
cal deformation, during inflammatory states or injury environ-
ments (Figure 1A) [42].

Upon the transduction of a stimulus and a certain threshold of
membrane potential has been reached, voltage-gated ion chan-
nels become activated. These include voltage-gated sodium
(NaV) channels, with nine subtypes (NaV1.1-NaV1.9) that de-
polarize the axonal membrane by allowing Nat ions to flow
into the nociceptors through the open channels (Figure 1A).
Subtypes NaV1.7, NaV1.8, and NaV1.9 are predominantly ex-
pressed in nociceptors, while the others are expressed by the
CNS (NaV1.1-NaV1.3 and NaV1.6), skeletal muscle (NaV1.4) and
in heart muscle cells (NaV1.5) [43]. After membrane depolar-
ization, voltage-gated potassium (KV) channels restabilize the
membrane potential by allowing K* ions to flow out of the no-
ciceptors through the open channels (Figure 1A). NaV and KV
channels are present throughout the axons of nociceptors and
play a crucial role in amplifying the initial cation influx gener-
ated by the primary transducers upon stimuli, thereby propagat-
ing AP to the spinal cord [44, 45].
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FIGURE1 | Nociceptive pathway and pharmaceutical interventions that modulate the signal at each stage, inspired by [31] (A) Representative

ion channels and receptors responsible for transduction in nociceptors peripheral ending in tissues; (B) Representative ion channels and receptors

responsible for transmission in spinal cord.

After transduction, the modulated nociceptive signal is relayed
to the DH of the spinal cord, where it undergoes the transmis-
sion step to second-order DH neurons. During the transmission
step (Figure 1B), voltage-gated calcium (CaV) ion channels lo-
cated at the presynaptic terminals of nociceptors in the spinal
cord regulate the AP-mediated release of neurotransmitters
into the synapse. The primary neurotransmitter of nocicep-
tors is glutamate, causing an activation of glutamate receptors
NMDA receptor (NMDAR) and AMPA receptor (AMPAR) on
second-order neurons, leading to an AP that relays the nocicep-
tive signal to the CNS. Second-order neurons are also indirectly
activated by glutamate bonding to G-protein-coupled receptors

(GPCRs) which subsequently activate NMDAR and AMPAR via
intracellular pathways [46].

Inflammation plays a key role in the modulation of nocicep-
tion, especially in chronic pain conditions [47]. This process in-
volves various non-neuronal cells including pro-inflammatory
immune cells, peripheral tissue cells, and glial cells, located
throughout the nociceptive circuits including the peripheral
tissue, DRG, and spinal cord levels. These non-neuronal cells
interact with nociceptors and contribute significantly to in-
flammatory responses (Figure 2). Specifically, the local im-
mune cells at the peripheral tissues recognize and defend the
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FIGURE 2 | Pro-inflammatory mediators (red) and anti-inflammatory mediators (blue) produced by non-neuronal cells in the nociceptive cir-

cuits, inspired from [30, 47]; tumor necrosis factor-o (TNF-a), interleukin (IL), interferon-y (IFN-y), leukocyte elastase (LE), specialized proresolv-
ing mediator (SPM), brain-derived neurotrophic factor (BDNF), Thrombospondin-4 (TSP4), Matrix Metallopeptidase (MMP2), c-c motif chemokine

ligand 2 (CCL2), c-x-c motif chemokine ligand 2 (CXCL2).

body against harmful events such as injury. The peripheral tis-
sue hosts resident or recruited immune cells at the injury site
including macrophages/monocytes (M1 and M2), neutrophils
(N1 and N2), mast cells, T-cells (Th1, Th2, Tregs, cytotoxic
T-cells), all indirectly modulated by eosinophils, that release
bursts of pro-inflammatory mediators including growth fac-
tors, histamine, lipids (e.g., prostaglandin), cytokines (e.g.,
tumor necrosis factor-oa (TNF-a), interleukin (IL)-18), and
chemokines (e.g., c-c motif chemokine ligand 2 (CCL2)) [47].
Additional cells present in the local peripheral tissues also
release pro-inflammatory mediators, such as damaged kera-
tinocytes in the skin epidermis releasing Endothelin-1, ATP,
TNF-a, IL-1f3, I1L-6 [48, 49] and synovial fibroblasts in the
knee joint affected by OA have also been shown to sensitize
nociceptors by an increased secretion of cytokines TNF-a, IL-
15, IL-6, and c-x-c motif chemokine ligand 2 (CXCL2) [50, 51].
Further, glial cells perform crucial functions to maintain the
homeostasis of the nervous system, such as Schwann cells that
provide support and insulation to neuron axons by producing
myelin and also have a pro-inflammatory effect via cytokine
release including TNF-a and IL-1f.

Upon release of pro-inflammatory mediators from non-
neuronal cells, they bind to their corresponding receptors on
nociceptors such as the GPCR family or corresponding cyto-
kines/chemokines receptors (Figure 2). This binding leads to
activation of specific ion channels via intracellular pathways
such as phosphorylation of ion channel proteins, lowering
their activation threshold, and thus indirectly triggering a
nociceptive signal, a process called peripheral sensitization
(Figure 2) [30, 52, 53].

In chronic conditions, peripheral sensitization of nociceptors
following tissue inflammation may induce activation of satellite
glial cells and immune cell infiltration surrounding the DRG,
which release pro-inflammatory mediators such as TNF-a, IL-
168, ATP, and sensitize the cell body of nociceptors (Figure 2).
Further along the nociceptive circuit in the CNS, the persistent

peripheral inflammation induces immune infiltration of T-cells
and activation of glial cells in the spinal cord. These glial cells in-
clude microglia, acting as immune cells in the CNS; astrocytes,
providing nutrients to nervous tissue and maintaining extracel-
lular ion balance; and oligodendrocytes, supporting and insu-
lating neuronal axons by producing myelin in the spinal cord,
similar to the role of Schwann cells. During inflammatory con-
ditions, glial cells are activated and release pro-inflammatory
mediators such as TNF-a, IL-13, BDNF, leading to local inflam-
mation and sustaining chronic pain by central sensitization
(Figure 2) [30, 54].

Under homeostasis, non-neuronal cells also release anti-
inflammatory mediators like the cytokines IL-10, IL-4, or
molecules called specialized pro-resolving mediators (SPM)
along the nociceptive circuits to resolve inflammation. These
mediators reduce nociceptive signals by targeting GPCR and
cytokine receptors, causing both the action of the anti- and
pro-inflammatory mediators to modulate the nociceptive
signal and the perceived pain (Figure 2). The dynamic in-
flammatory process is thus modular, and local non-neuronal
cells have divergent actions via mediator's release. However,
in pathological conditions, a dysregulation of this dynamic
pro- and anti-inflammatory balance further drives chronic
pain [55].

Upon nociceptor activation by noxious stimuli, they release
neuropeptides such as calcitonin gene-related peptide (CGRP)
and substance P (Figure 2) [47]. These neuropeptides, in turn,
influence immune cell activity by recruitment and triggering
the release of pro-inflammatory mediators from immune cells
like monocytes and mast cells, thus sustaining inflammation
through a positive feedback loop called neurogenic inflamma-
tion [47]. Interestingly, CGRP and substance P neuropeptides
have also been identified to promote tissue repair mechanisms
[56-59]. Therefore, the effects vary depending on the context
and arise from a complex interaction, likely influenced by the
context of homeostasis and pathological state.
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TABLE1 | Currentstandard behavioral tests for pain assessment in the clinical setting (adapted and expanded from [65-67]).
Test Stimulus Measurement
Tail-flick Heat Apply thermal radiation to tail; measure tail movement
Hargreaves Heat Apply thermal radiation to paw; measure paw withdrawal
Hot plate Heat Place on hot plate; Measure paw reaction time
von frey Mechanical  Apply filaments to inflamed area; Measure paw withdrawal force
Mechanical paw pressure (Randall-Selitto) Mechanical Apply increasing force; measure pain
behavior (withdrawal, struggling)
Facial Grimace Scale Various Elicit with acute pain stimulus; assess facial expression;
Score based on orbital tightening, nose, ears, cheeks
Ultrasonic vocalization Various Elicit with acute pain stimulus; assess ultrasonic vocalizations
Nesting behavior Various Elicit with acute pain stimulus; assess nest
building and integration time
Burrowing behavior Various Elicit with acute pain stimulus; assess burrowing behavior
Tail Clip (Haffner's) Mechanical Apply clip to tail; Measure tail movement reaction time
Electrical stimulus (flinch/jump) Electrical Apply electrical stimulus; measure flinch/jump response

Stimuli via ion channels and modulation via inflammatory me-
diators and receptors are both essential for signaling danger to
the body. However, sustained or intense exposure to noxious
stimuli increases the reactivity of nociceptive nerves, leading
to persistent peripheral and central sensitization, causing a trig-
ger of signaling pathways that promote a long-term shift in the
activity of nociceptive circuits by higher expression of certain
ion channels and receptors [60]. Indeed, transduction of noxious
stimuli into AP is facilitated, and this may occur through either
increased response to suprathreshold stimuli or reduction in the
AP threshold. Clinically, this translates in pathophysiological
conditions of respectively hyperalgesia, that is, exaggerated re-
sponse to painful stimuli, and allodynia, that is, pain elicited
by normally nonpainful stimuli [52]. Clinical observations have
indicated that prolonged pain hypersensitivity at the periph-
eral tissue level induces structural changes of the corticolimbic
brain region over time, contributing to the onset of chronic pain
[61, 62].

4 | InVivo Models to Study Pain Pathophysiology

The lack of clinically relevant models to study human pain
mechanisms is a major reason for the lack of effective pain
therapies. This is strongly linked to a limited comprehen-
sive understanding of pain mechanisms. Human pain can
be studied in the clinical setting by limited means and pres-
ents numerous practical challenges. Further, it is inherently
subjective and is constrained by ethical considerations [63].
Consequently, the majority of mechanistic research and drug
screening involves the use of in vivo animal models, particu-
larly rodents, to investigate pain [64]. Conducted experiments
in terms of drug development typically include behavioral
tests to assess an animal's ability to respond to a pain-like
stimulus, usually induced by heat, mechanical load, or elec-
trical stimulus (Table 1). These tests can be used to measure
the efficacy of new analgesics by evaluating whether pain

sensitization is reduced upon drug administration. Apart from
being time-consuming and expensive, this poses a significant
ethical issue as these experiments are carried out on unmedi-
cated animals, causing severe suffering [65, 66]. Additionally,
pain-related research in animal models relies on indirect as-
sessments of pain, such as pain-like behavior, and primarily
focuses on acute conditions, failing to adequately represent
chronic human pain [67].

Alternative models to study chronic pain in a more relevant
physiological setting include creating an injury by experimental
surgery or induction by chemical or biological agents to mimic
certain disease states, as further outlined in Table 2. In these
models, pain is measured by evaluating behavioral changes via
pre-defined tests (Table 1) and/or physiological changes in the
animals pre- and post-procedure, including for example, in-
creased levels of pro-inflammatory mediators in the affected tis-
sue or histological alterations in local tissues [64, 69]. However,
the pain and suffering in these animal models are even more
sustained due to their chronic aspect.

Rodents such as rats and mice have traditionally been the pri-
mary animals used in pain research, mainly due to similarities
in the neuroanatomy and physiology across mammalian spe-
cies [70]. However, significant differences between rodents and
human pain physiology are evident, particularly in transcrip-
tome analyses. Specifically, the genes expressed in DRG where
nociceptors are located do not overlap between rodents and hu-
mans, leading to both quantitative and qualitative differences in
the expression of receptors and ion channels, such as variations
in the composition, physiology, and functionality of Nav1.8 and
NaV1.9 channels [71-73]. Consequently, rodent models have
failed to function as pre-clinical models for clinical translation
in the development of new safe pain drugs. In fact, their use is
highly associated with the high failure rates of pain drugs in
the clinical phases (phase I to approval) estimated at 95% [74].
These failures can be attributed to both adverse side effects and
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TABLE 2 | In vivo injury pain models in animal models (adapted
and expanded from [63, 68]).

Model Induction method

Joint injury model Surgery (destabilization
of the medial meniscus,
anterior cruciate ligament
transection, medial

meniscal transection)

Incisional pain model
(mimics postoperative pain)

Surgery, incision on
skin or muscle tissue

Surgery (pancreatic
duct ligation) or
injection (caerulein)

Chronic pancreatitis (mimics
pain associated with
pancreatic disorders)

Low back pain
model (degeneration
intervertebral disc)

Surgery, puncture or
injection (complete
freund's adjuvant [CFA])

Inflammatory pain model Injection of chemicals
in paw or joint
(carrageenin, dextran,
CFA, formalin, zymosan,
lipopolysaccharide) or

irradiation (ultraviolet-B)

OA pain model Injection of chemicals into
joint (monoiodoacetate,
streptococcal cell wall
induced arthritis,

collagen-induced arthritis)

Capsaicin-induced pain model Injection of capsaicin

into paw

Parenteral injection of
acetic acid: measurements
of retraction of
abdomen and stretching
of hind limbs.

Acetic acid writhing test

Cancer pain model Injection of cancer cells

to induce tumor growth

a lack of efficacy in humans, despite the apparent safety and ef-
fectiveness observed in rodent models [64]. Such setbacks chal-
lenge the drug development market as the cost for clinical phase
trials may reach 100 million USD [75]. More generally, the con-
trolled environment often used in animal studies that typically
rely on inbred animals diverges from the heterogeneous nature
of humans and the individual impact on chronic pain, further
impeding the successful translation of research findings to the
human population [76].

While in vivo models may stay essential for some toxicity and
safety studies, human in vitro models are undoubtedly required,
not only in the field of pain research models but across various
domains. The growing endorsement from regulatory and fund-
ing agencies to create diverse microphysiological systems (MPS)
or organ-on-chip models reflects a commitment to reducing re-
liance on animal testing [77] and underscores a paradigm shift

in research methodologies. This enables researchers to have the
ability to directly study human cells and tissue of interest, mark-
ing a significant advancement in developing more relevant and
translational findings.

5 | InVitro Models of Pain

Sensory neurons, including nociceptors, can be isolated from
mouse or rat DRG and have been widely used as an in vitro
tool for research around PNS and in vitro pain modeling. The
isolation and culture processes have been well documented
and reported [78]. Further, human-related pain mechanisms
can also be studied in vitro by utilizing human DRG (hDRG)
neurons to avoid species differences and mitigate failures
in translation, but access to viable hDRG neurons remains
limited due to suitable donor availability [1], as postmortem
collection is required. This leads to issues and major limita-
tions for patient stratification and studies in particular patient
groups. In the past years, the possibility to utilize human stem
cells provides a major contribution to elevated model systems
and technologies in the field and the potential to advance re-
search [71].

Stem cells can be divided into embryonic and adult [79],
where embryonic stem cells (hESCs) are derived from pre-
implantation embryos in early development, making them
pluripotent and thus having the crucial ability to differentiate
into almost any required cell type, including cells of the CNS
and PNS such as nociceptors [80]. In contrast, adult stem cells
are present in adult tissues; their primary role is to regenerate
the tissue in which they reside. These cells are multipotent,
limiting their ability to differentiate, and are also more rare
and difficult to identify [79, 81]. Stem cells, especially hESCs,
when expanded in vitro, offer several advantages over somatic
cells, including high availability, unlimited self-renewal ca-
pacity, and pluripotency [82]. This has led to a significant
impact on research, as hESCs provided researchers with in-
creased flexibility and versatility [83]. However, the use of
human embryos raises ethical concerns and is largely rejected
by the community [84]. To overcome this, scientists developed
a protocol to reprogram adult human fibroblasts into induced
pluripotent stem cells (iPSCs) based on the introduction of
pluripotency genes known as the Yamanaka factors (Oct3/4,
Sox2, K1f4 and c-Myc [85]) which led to full reprogramming of
the cell and restoration of pluripotency. Unlike hESCs, iPSCs
are artificially generated stem cells originating from somatic
cells, making them a more ethically viable source, but they
still allow for the study of patient-specific characteristics as
they maintain their plasticity during reprogramming. This
also means that iPSCs can be personalized for each patient
by collecting their own somatic cells, paving the way for more
tailored treatments [86].

In pioneering work by Chambers et al. [87], a protocol for differ-
entiating iPSCs into nociceptors was demonstrated for the first
time by introducing five small molecules pathway inhibitors
(SB431542, LDN-193189, CHIR99021, SU5402, and DAPT) to
induce neural identity and differentiation (Figure 3A) [87]. The
first two small molecules, SB431542 and LDN-193189, function
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FIGURE3 | (A)The Chamber protocol of iPSCs differentiation into nociceptors involves several steps from neural identity induction to differen-

tiation and maturation, with each step expressing specific biomarkers, inspired from [88]. First, neural identity is induced over 6days using small
molecule pathway inhibitors (SB431542, LDN-193189). After 3days, additional small molecules (CHIR99021, SU5402, and DAPT) are introduced to
promote specific nociceptor differentiation. Following 11 days, neurotrophic factors are required for maturation, which can extend for an additional
20days. (B) Direct reprogramming of fibroblast into nociceptors by Blanchard et al. [89]. Fibroblasts are first infected with lentivirus with the tran-
scription factors BRN3A, NGN1, NGN2, transcription factors are induced by doxycycline. 7days post induction, doxycycline was withdrawn. 10 days
post-induction, media was replaced with neural maintenance media, with the neurotrophic factors, DIV =day in vitro.

as dual-SMAD inhibitors to efficiently convert iPSCs into neu-
ral crest cells, inhibiting the bone morphogenetic protein (BMP)
and transforming growth factor-g (TGF-@) signaling pathways,
both of which utilize SMAD proteins for signal transduction
(Figure 3A). The following molecules, CHIR99021, SU5402,
and DAPT, accelerate neural crest specification and peripheral

neuron formation from the neural crest cells by Wnt pathway
activation and inhibition of Notch, vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF) and platelet-
derived growth factor (PDGF) signaling pathways (Figure 3A).
Upon differentiation, the cells display immature neuronal mor-
phology with several neurites forming an arborised monolayer.
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Over 20days, neurotrophic factors (brain-derived neurotrophic
factor (BDNF), glial cell line-derived neurotrophic factor
(GDNF), nerve growth factor (NGF), and ascorbic acid) helped
neurons mature into ganglia-like structures (Figure 3A) [90].

The differentiation protocol has since the first publication
been followed by modified versions where the timing and na-
ture of the small inhibitors vary depending on the specific ex-
periment (Table 3). With these adaptations, different sensory
neuron populations have been obtained, such as pruriceptors,
which are sensory neurons for itching; proprioceptors that are
the sensory neurons specialized in detecting the position and
movement of our body parts; or mechanoceptors representing
sensory neurons for the sense of touch and non-noxious me-
chanical pressure [1]. Importantly, differences in the efficacy
and reproducibility of each of the specific iPSCs differentia-
tion protocols depend on their initial cell density and surface
coatings as well as the type and genetic variations of the initial
somatic cells [111], highlighting that the protocol needs to be
selected between published studies, and thorough characteri-
zation is crucial.

Differentiation of iPSCs into nociceptor typically requires
beyond 20days to gain their morphological and electrophysi-
ological characteristics [87]. At the end of this maturation pe-
riod, gene expression comparison between primary human
(h)DRG sensory neurons and iPSC-derived sensory neurons
identified an 84% overlap of hDRG ion channel genes in iPSC-
sensory neurons [93]. Yet, the maturity level of iPSC-derived
sensory neurons remains lower than that of primary hDRG
sensory neurons due to their smaller size and reduced electro-
responsiveness, resulting in an incomplete replication of the
in vivo situation [72].

Following the revolution of iPSC generation, direct reprogram-
ming of somatic cells using transcription factors into various
differentiated cells, including sensory neurons, emerged as a
more rapid method to generate and investigate sensory neurons
(Table 3). In 2015, direct neuronal differentiation of human fi-
broblasts into nociceptors was generated. This was achieved
by Wainger et al. employing five key transcription factors:
ASCL1, MYT1L, NGN1, ISL2, and KLF7, while Blanchard et al.
achieved their results with three: BRN3A, NGN1, and NGN2
(Figure 3B) [89, 107]. These protocols enabled the generation
of sensory neurons in fewer steps, offering a faster differentia-
tion strategy. However, a significant issue is the low conversion
rates of somatic cells into nociceptors due to a high differenti-
ation variability, preventing their scalability and widespread
adoption compared to the initial Chamber protocol. In the same
idea, Wilson et al. [108] succeeded in directly differentiating
multipotent somatic stem cells that reside in the bulge of hair
follicles into nociceptors via a small molecules strategy, thereby
avoiding genetic changes via transcription factors. However,
here too, high differentiation variability remains, indicating the
continuing need for an improved process [108]. Further, direct
reprogramming has been established using different somatic
cells such as blood cells and incorporating an additional differ-
entiation step involving neural precursor cells (NPC) as inter-
mediates (Table 3) [109, 110], allowing for better differentiation
control and reduced variability, thereby increasing the efficiency
of nociceptor output while maintaining a more rapid process.

Clearly, the establishment of innovative differentiation and re-
programming methods paves the way for greater availability
and access to nociceptors and the ability to study human pain
sensing mechanisms with patient-targeted pain in focus. Yet,
further efforts are needed to close the gene expression gap be-
tween primary human nociceptors and the generated ones.

In addition to the generation of human nociceptors, iPSCs dif-
ferentiation protocols for various other cell types involved in
the nociceptive circuit have been developed, including for both
immune cells: macrophages [112], neutrophils [113], mast cells
[114], T-cells [115], and peripheral/central glial cells: microglia
[116], astrocytes [117], oligodendrocytes [118], Schwann cells
[119]. Additionally, protocols for second-order DH neurons of
the spinal cord have been established [120]. These experimental
protocols enable the development of in vitro human models with
enhanced physiological relevance and improved biomimetic cul-
tures. Ultimately, they facilitate more advanced studies of no-
ciceptors cultured with supporting cells known to play crucial
roles in human physiological pain sensitization at both periph-
eral and central levels.

5.1 | Electrophysiological Characterization

The functional characterization of nociceptors and physiological
readouts is essential for the assay outcome. Nociceptors are ex-
citable cells; consequently, they transition from a resting state to
an excited state upon activation, and this transition enables the
measurement of an extracellular potential via electrodes [121].
Further, this translates into spike signals that serve as signa-
tures for neuronal AP. Tools for electrophysiological characteri-
zation of nociceptors are thus crucial in developing in vitro pain
models to understand mechanisms and monitor the effects of
induced stimuli or analgesics.

In vitro, whole-cell patch-clamp methods efficiently measure
neuronal extracellular electrical activity in various modes, in-
cluding current clamp, voltage clamp, dynamic clamp, and can
be manual or automatic [122]. However, these measurements
are time-consuming, preventing the scalability of sensing sites,
and the invasive nature disrupts the intracellular milieu and
therefore omits the possibility for complementary readouts
[123]. Calcium imaging represents an alternative with fluores-
cent markers used to record intracellular calcium flux of multi-
ple cells simultaneously, indirectly linked to electrical activity,
but is still limited in throughput, temporal resolution, and po-
tential functional interference by the used dye [124].

An alternative technology on the rise is microelectrode arrays
(MEA), offering a non-invasive and label-free method for mea-
suring in vitro extracellular electrical activity. This technology
enables rapid and dynamic electrophysiological characteriza-
tion of the entire nociceptor population cultured on the chip,
which can be pre-coated with adhesion molecules to improve
culture conditions. Depending on the design, MEAs can offer
high throughput, high resolution, and limited operator expertise
[125]. To achieve this, materials and systems integration is crit-
ical, and complementary metal-oxide semiconductor (CMOS)
technology in MEA chips has been shown to enable the integra-
tion of circuitry with above standard density while allowing for

9 of 29

- IUeySMOS0U Y e AQ YHISZ0TOSZ0Z [1/960T OT/I0p/Wod A3 1M Atelq1put|uo gesey//Sdiy Wwo.j papeojumoq ‘9T ‘G20z ‘09890€ST

35UBD T sUOWIWOD A1) 3|gedt|dde a3 Aq pausenob a1e sspilfe YO ‘8sn Jo san. 1oj Areld1T auljuQ A3 ]I UO (SUONIPUOD-pUe-SULLIB)WI0D A8 | 1M Ae.d 1BUUO//:SdNY) SUORIPUOD pue SWid | L) 88S *[G202/80/6T] U0 ARiqiauluo A(IM D3N



15306860, 2025, 16, Downloaded from https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202501025RR by Dara Khosrowshahi - IMEC , Wiley Online Library on [19/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

wn
g
3
]
S
2
=
V
(senunuo)) S
A1)9WI0)A0 MO[ ]
AnstwayoojLoountu]
3unjolq uIeIsom proe o1qI00s®
bas-wN [199-0[3uls pue y[ng €IN
4odb $103do00UBYIIN AON 1dvd
¥Dd-LY-[199-03uls s103daooridoid ANAD T0vSNS (0TA-0Q) 68TZ6INA'T
[+01] 'Te 10 a1RZZRIN )M paurquiod durepd-yojed $103dod100N ANad 120066 4IHD (01a-0Q) TrS1EPAS sd!
AnsTuraydojLoounurur]
uoneZIPLIGAY NIIs Ul VNI
bas-yN ¥ 1e[onu-a[3uls pue yng ADN
¥odb-Ld LN
Surdew wnipe) ANAO ZO0¥NAN A9d/4949
[€0T] "B 39 S[[OYIIN durepo-yojeq $103do00UBYIIN ANAag VeNId THSTErdS osdt
AnysTwraydojAoountui] ¢-LN
UONRZIPLIGAY NyIS Ul ANAO
bas-vN Y ANad 494
[cot] TR 30 Surdew wniore) A9N A94
SUSWIAIS-J[UIYOS durepo-yoreq s10jdeoouetoaN U proe orounoy wnIpajy d19yds DSdr
dINV2
A1ow0)A0 MO[ I PIo® 01109SE €~ N
AnsrwayoolKoounuruty AON B1a-11A)A94
¥odb-Ld ANAD (81a-11Q) 4941 (01d-0Q) TrSTEYES
[T0T] T® 10 BIRYOWN SurSewr wne) s103deorimig ANAd (81Q-T1QA) THSTIELES (ota@-oq) urssoN DOsdrt
A1ow0)A0 MO[ I ¢ LN
adudIsATON[JOUNUT ] ANad (8d-z@) LdvVA
g4odb ANAO (8a-za) zo¥sns (SA-0Q) 68TT6INA'T
[ooT] ‘Te 3 1STUOIQ durep-yoed s101daooridorg AON (LAzA) 1200669 THD (sd-0Q) THSTEPES Dsdrt
A1)ow0)A0 MO[ ] AON
[66-¢€6] :sa8ueyd Sururesounurury (proe 01q109s® ‘JIN V) (€-LN)
[[ews yim bas-vNY AON (11d-€a) Ldva
s[0o0301d TefIUIIS SurSewr wne) ANAO (ITa-€a) zovsns (Sa-0Q) 68TZ6INA'T
[£8] Te 30 s1oquIey) durepo-yored s103da0100N ANad (I1d-£A) 120066 9IHD (sd-0Q) TrSTEPLS osd!
uoyLIUJIP SOSAI
SIOUAIIIY uonezrloeIey) ad£1qns uoarnau uonernjen UOIIRTIIUDIIJIP uono/npur uoInau o
AI0SU3s JudBAdIg U0INAU AIOSUIS AINUapt [eINAN Axosuas yo urSriQ 3
o
*9I9Y pauonuaw Jou are sjod0301d sOSH 910N ([26 ‘16 ‘7L] woij papuedxs pue pajdepe) SUOINIU AI0SUIS PIALIOP-DSJ! JO s[090301d uonenuaIdlId | € ATAV.L S



(senunuo))
404
4049
12066 M1HD
urSSoN
OT1dH 68TE6INAT
SISATeu® )FUS] 9ILINAN SIS ES (sdrerpoULIAIUL
K130w03£5 MO[ €1IN SOUIY034d Od.L se (DdN) S[[90
AnsrwaydojLoounwuw] ADN 12066 ¥IHD €11 JTosinoaid [ernsu)
dod-1Ld ANAO (40270 TeNd S[[99 dndt0dojeway
[60T] ‘Te 10 20T Surdewr wnoe) $103dao100N ANQd Ldvd Lo +7€AD
AISTWAYO0ISTYOUNTIT | dDOH
AnstwayoojLoountu] ¢-ILN SO[OI[[OF ITeY Ul
¥odb 1dvd 120664THD S[[99 Wd)s d1JBWOS
[80T] "T® 32 UOSTIM Suidewr wnoe) s10)dod100N eu 68TE6INAT HHS juejodnny
AnsruraydojLoounurur]
VSITd
¥Dd-LY 1199 d[3uIg ION LATI
¥odb ANAO TSI
SurSewr wnpre) ALND INON
durepo-yojeq ANad TILAN
[£0T] Te 10 1oSuTeM VAN $101d20190N 94 1T0SV eu ISBIq0IqId
AnsruraydojLoounurur]
¥odb-Ld $103do00UBYOIN ANAD CNDN
MQMMNE_ wnisfen mHOuQUOOCQOH& ANdd INON
[68] ‘Te 10 preyouelg durepo-yoreq $101da0100N AON VeNYIL ’'u Jse[qoiqig
Sunumuna3oadad 192417
Suruuedounwwiy proe orounaI LdVA
A119W0)£0 MoTq LN
AnystwaydojLoountu] s10}dodourt ooy ANAg (z-0Q) T€9LT-A
¥Ddb-1¥ s103dadoridoig ANTD (T1d-2A) T20669IHD (za-oa) ding
[901] ‘& 10 ZeI1Q-OITES VAN $103da0100N JION (¢1-2Q) THSTIEPES (T-00)TT0669THD osd!
AnysTwrayoojLoountui]
VSITd
uonezIpHqAY nys uf €-IN vLOSLIAd
bos-vNY ION zdd
Surdewr wnoe) ANAD LddD
durep-yojed ANdg T0 €8V (€@-o0a) 10 €8V
[soT] Te 32 Suaq VAN $103da0100N 1667¢€0dd (F1A-€Q) ¥1086MIHD (€d-0Q) +10869THD OSd!
S90UdIJY uonezrIdoRIRy) ad£1qns uoarnau uonjeInjen UOIIBIIUSIIJJIP uornonpur uoInau
AI0SU3s JudBAdIg U0INAU AIOSUIS AINUapt [eINAN Axosuas yo urSriQ

(ponunuo)) | €HTAVL

15306860, 2025, 16, Downloaded from https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202501025RR by Dara Khosrowshahi - IMEC , Wiley Online Library on [19/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

11 of 29



References

Characterization

Prevalent sensory
neuron subtype

Maturation

Sensory neuron
differentiation

| (Continued)
Origin of sensory Neural identity
induction

neuron

TABLE 3

Vojnits et al. [110]

Calcium imaging
Immunocytochemistry

Nociceptors

BDNF
GDNF

DAPT

OCT-4
SB431542

CD34*
hematopoietic cells

SU5402
CHIR99021

Flow cytometry
Neurite length analysis

NGF
NT-3
Ascorbic acid

LDN193189

(neural precursor
cells (NPC) as

CHIR99021

bFGF
EGF

intermediates)

Forskolin

smaller electrodes with maintained signal-to-noise ratio, which
is particularly relevant when culturing IPSC-derived nociceptors
to better detect their electrical firing. It has been demonstrated
that these CMOS MEA chips can incorporate thousands of elec-
trodes, reaching up to 16384 microelectrodes (Figure 4) [128]
and 26400 microelectrodes [129, 130] compared to hundreds or
below in classical MEA chips [131]. The increased electrode den-
sity and the subcellular sizes of the electrodes on these platforms
enable experiments at high spatial resolution, enabling single-
cell resolution and the detection of electrical activity in indi-
vidual nociceptor axons (Figure 4) [129]. Additionally, a higher
sampling rate (i.e., the number of electrophysiology data points
recorded per second) enables sub-millisecond temporal resolu-
tion essential for monitoring neuronal AP [126, 128].

Furthermore, the development of CMOS MEA technology has
allowed the integration of additional modalities on the same
chip, such as impedance measurement offering new insight on
cell attachment and mobility [128], and stimulation units that
allow to simultaneously stimulate under applied voltage specific
nociceptor axons and record their electrical activity [128, 131].
The performance of this technology positions it as a promising
platform for evaluating nociceptor functionality, with high po-
tential to unravel the complexities of nociceptive pain.

To further improve the replication of human biology, 3D MEA
technology is being developed enabling it to interface with neu-
rons in a 3D environment using a mesh structure [132, 133] or
helical structure [134]. In comparison to 2D, these chips better
mimic the in vivo environment by allowing neuritic outgrowth
in space and facilitating the study of more physiological organ-
oid models. Although this strategy enhances spatial resolution,
broader adoption of this technology requires improved computa-
tional tools and a higher number of electrodes to accurately detect
electrical activity changes in the tissue's third dimension [132].

5.2 | Compartmentalization

A crucial aspect of co-culture studies is the compartmentaliza-
tion of various cell populations within the system using bio-
compatible materials, allowing cells to be cultured in a spatial
arrangement similar to that of the in vivo circuit. Microchannel
designs within these materials enable the sprouting of nociceptor
axons into adjacent compartments, establishing a diffusion bar-
rier but enabling communication with other cells. Meanwhile,
the cell body of nociceptors is isolated from the axons to replicate
their in vivo location in the DRG [135]. Moreover, the optimiza-
tion of microfluidics enables the use of specific culture media
for each cell population, providing improved control of their cul-
ture environment. The most popular material for this purpose
is the elastomer polydimethylsiloxane (PDMS). The fabrication
involves using soft lithography to create polymer molds with the
desired design, followed by pouring and curing PDMS. It has
been widely adopted due to rapid prototyping, low cost, optical
transparency, biocompatibility for long-term culture, and gas/O,
permeability [136, 137]. However, in addition to its limited scal-
ability for high-throughput manufacturing, a significant draw-
back is that small molecules like drugs and media supplements
can permeate into the material, decreasing the intended con-
centration. This can compromise experimental reproducibility
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and potentially result in misrepresentation of drug candidate
toxicity and efficacy. Promising alternative materials have been
investigated, including thermoplastic polymers like cyclic ole-
fin copolymer (COC) or poly(methyl methacrylate) (PMMA)
that have shown improved ability to prevent small molecule
absorption [138]. Advanced in vitro models often incorporate
sensors and different substrates, requiring surface treatment
(such as plasma, temperature and solvent treatment) to ensure
seamless bonding [139, 140]. For example, bonding materials
like silicon for MEA chips can be challenging due to incomplete
bonding and delamination, leading to leakage. Other materials,
like off-stoichiometry thiol-ene polymer, commercially called
OSTEMER, allow for direct bonding without treatment with
sealing to any substrate due to the presence of an excess of thiol
or allyl groups on the surface [141]. These critical points clearly
point out that currently used materials represent advantages
and disadvantages, requiring careful consideration based on ex-
perimental needs.

5.3 | State of the Art

By combining improved differentiation protocols for nocicep-
tor generation with different electrophysiological techniques
and materials for compartmentalization design, researchers
now have powerful tools to develop physiologically relevant
human in vitro pain models. A vast majority of studies and
patents on different in vitro pain models can be found in the
literature, including respectively monocultures of nociceptors
(Table 4) as well as co-cultures with other cell types (Table 5).
Further, different assays used in these studies to test the elec-
trophysiology of the nociceptors in the models exist and need
to be selected carefully based on the aim. The utilization of
human in vitro models allows for detailed perturbations in-
cluding pain stimulus induction (agonists) and analgesic ad-
ministration (antagonists) that target different ion channels
and receptors involved in the transduction and transmission
steps (Figure 1). This approach allows for tailored monitor-
ing of compound efficacy on activating the AP of nociceptors
or suppressing their firing, thereby validating and refining
the model.
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As pain sensitivity primarily relies on nociceptors, many re-
search teams have focused on 2D monocultures of nociceptors
to better understand their function (Table 4). In these studies,
both agonists and antagonists target nociceptor-specific ion
channels and receptors, mainly the TRP family (such as TRPV1,
TRPA1, TRPMS) as well as voltage-gated channels like NaV but
also GPCR and glutamate receptors. In addition to administer-
ing artificial compounds, one study examined the effect of in-
flammatory conditions on nociceptor sensitivity to pain stimuli.
This was achieved by incubating mouse knee sensory neurons
with real synovial fluid from a human OA patient, which in-
creased both the spontaneous firing of these neurons and their
excitability to the agonists [145]. Studies have also developed 3D
models using iPSC-derived nociceptors seeded at high density
on ultra-low-cell adhesion surfaces [129, 146]. After generating
these organoids, they were seeded in wells and exhibited axonal
outgrowth in PDMS microchannels for axonal guidance, with
confirmed expression of functional nociceptor-specific ion chan-
nels and receptors. Further, unidirectional axon guidance [146],
and even bidirectional guidance with two lateral compartments
can be achieved [129]. This last study exploited the CMOS MEA
technology and showed that with this high-resolution platform
they could detect single axonal AP and cluster nociceptors based
on their waveforms into four different archetypes, each poten-
tially representing a different nociceptor subtype [129].

Several studies have focused on the role of different KV and
NaV channels (NaV1.7, NaV1.8, and NaV1.9) in DRG neurons for
pain signaling (Table 4) [71, 147-149, 151]. They address how
mutations or variations in these channels contribute to hyper-
excitability in DRG neurons, leading to chronic pain conditions
such as inherited erythromelalgia (IEM) and painful peripheral
neuropathy. Pioneering experiments using rodent DRG neurons
incorporated human channel mutations modeled via dynamic
clamp techniques [177-179]. With the advent of iPSC technology,
their research advanced to studies using patient-derived iPSCs
where dynamic clamp, voltage clamp, and current clamp were
employed to analyze the functional properties of these channels
and their impact on neuron excitability. With this setup, gain-of-
function mutations could be identified by studies showing how
these mutations enhance persistent currents, depolarize resting

FIGURE4 | CMOSMEA chip architecture for extracellular recording (A) features integrated circuitry with 16 384 TiN microelectrodes organized
into 16 clusters (B). Each cluster contains a 32 x 32 array of microelectrodes (C), which are further organized into pixels of 4 microelectrodes each of
a size 8um with a 15um pitch (D). The subcellular size of the electrodes enables single-cell resolution and the detection of electrical activity in indi-
vidual nociceptor axons. This data can then be analyzed at the network level in terms of firing rate or visualized as spikes in a raster plot. Adapted

from [126, 127].
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membrane potentials, and increase firing probabilities, thereby
amplifying pain signals [148, 149, 151]. The obtained mechanis-
tic insights into how specific channel mutations or conductance
levels affect neuronal behavior further linked altered biophysi-
cal properties to increased excitability and pain phenotypes. The
findings suggest potential therapeutic strategies, such as partial
inhibition of identified NaV and KV channels, to mitigate hyper-
excitability and pain.

While monocultures of nociceptors have been instrumental in
advancing our understanding of pain mechanisms, they often
lack the complexity of the native tissue environment. To ad-
dress this limitation, researchers have increasingly turned to
co-culture systems that incorporate nociceptors with tissue-
specific cell types to replicate aspects of organ—or tissue pain
sensitization (Table 5). These attempts have highlighted that no-
ciceptors may exhibit altered receptor expression depending on
the tissue target, leading to enhanced sensitivity of nociceptors,
which can provide insights into how pain signals are modulated
in response to the cellular microenvironment.

5.3.1 | Skin

Several co-culture models of skin-derived cells such as fibro-
blasts and/or keratinocytes and nociceptors have been de-
scribed, depicting varying effects on neuronal responses and
neurite outgrowth [153-161]. These models are not only relevant
for biopharmaceutical companies but also for the cosmetics in-
dustry, as they help verify whether skincare active agents are
non-harmful and non-painful for human consumers. Further,
an artificial skin construct composed of fibroblasts embedded
in hydrogel with keratinocytes, innervated with nociceptors,
demonstrated that in the absence of the skin construct, neurite
damage and retraction were more pronounced when capsaicin
was administered, concluding that the skin constructs acted as
a barrier by slowing the diffusion of capsaicin to the nocicep-
tors (Table 5) [152]. Another study showed that upon stimuli
administration, nociceptors in co-culture with keratinocytes
were more sensitive and active than those in monoculture, with
a higher expression of TRPV1 [153].

5.3.2 | Vasculature

By co-culturing endothelial cells and nociceptors, an elevated
nociceptor sensitivity response to capsaicin as well as higher
TRPV1 ion channel expression was shown, highlighting the
critical role of vasculature on sensitizing nociceptors (Table 5).
In co-culture, larger vascular lumens and denser neurite out-
growth were also observed, implying that there is bidirectional
crosstalk between the two cellular populations [162].

5.3.3 | Joint Derived Cells

Pain sensitization remains a key feature in OA pathophysiol-
ogy, and co-cultures of nociceptors with joint-derived cells are
critical in the context of OA-related pain (Table 5). Additional
co-regulators include joint inflammation and articular cartilage
deterioration. One study successfully co-cultured nociceptors

with fibroblast-like synoviocytes (FLS) activated by the inflam-
matory cytokine TNF-a, demonstrating increased neuronal
sensitization by calcium imaging compared to nociceptor mono-
cultures, highlighting the essential role of synovial tissue cells
in pain modulation within the context of OA [50]. Another study
established a compartmentalized innervated cartilage model
composed of chondrocytes encapsulated in hydrogel, replicat-
ing the pro-inflammatory joint microenvironment by admin-
istering human pro-inflammatory M1 macrophage secretome
to the model. Interestingly, it was observed that nociceptors
exhibited enhanced axonal growth when exposed to the pro-
inflammatory secretome alone, but this effect was not replicated
in direct co-culture with the 3D engineered cartilage construct
that was exposed for 48h to M1 macrophage secretome. These
findings suggest that differences in local concentration and sta-
bility of soluble mediators, and potentially a role in the dynamic
cell-cell communication, may affect pain sensitization [163].
Furthermore, a more complex joint-on-chip model with three
essential cellular compartments of the joint connected was de-
veloped, including a cartilage osteochondral complex, synovial
tissue, and adipose tissue [167, 180]. Next, a fourth compartment
of nociceptors innervating each of the compartments via micro-
channels to model OA pain was included [166]. This technology
has remained in patent status, and no published studies have
been conducted so far.

By implementing a MEA chip with PDMS-based microfluidics
to study the effects of osteoclasts in bone disease on the pain
sensation, administration of osteoclast secretome on the axonal
compartment demonstrated an enhanced outgrowth of sensory
neurons, as well as an increased firing rate when exposed to os-
teoclasts secretome [164].

5.3.4 | Immune Cells

To explore the nociceptor-immune crosstalk, a compartmen-
talized co-culture model of dendritic cells and nociceptors
was developed (Table 5) [165]. Upon agonist administration,
nociceptors induced the release of proinflammatory cytokines
(IL-12 and IL-6) by dendritic cells through direct physical con-
tact. However, when treated with the NaV channel antagonist
lidocaine, there was no enhanced cytokine production from
dendritic cells. Interestingly, they also observed that nocicep-
tors spread their AP to dendritic cells via calcium imaging.
Additionally, the study showed that the neuropeptide CGRP
released by nociceptors induces the upregulation of genes im-
plicated in dendritic cells’ sentinel functions and inflammatory
responses, further highlighting the importance of immune-
nociceptor crosstalk [165].

5.3.5 | Cancer

A study cultured nociceptors in a 3D hydrogel scaffold with an
NGF chemoattracting gradient, enabling them to innervate a
compartment of cancer spheroids via glass-designed microchan-
nels (Table 5) [135]. When co-cultured with cancer spheroids, an
increased firing of nociceptors was observed upon administra-
tion of capsaicin and bradykinin, demonstrating the impact of
cancer on pain sensitization.
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5.3.6 | Glial Cells

Most co-culture studies have focused solely on the modeling of
the transduction step in the PNS between peripheral tissue cells
and nociceptors, while glia and other non-neuronal cells have
important functions in the CNS and are known to be involved in
neuroinflammatory processes and be contributors to persistent
pain. Thus co-cultures of neurons and glial cells represent valu-
able tools to study cellular mechanisms of nociception (Table 5)
[181]. For this, a non-compartmentalized co-culture model of
iPSC-derived astrocytes and nociceptors on a MEA chip enabled
the observation of more stable and higher spontaneous activity
over time compared to monocultures, highlighting the role of
astrocytes in modulating nociceptive signals and addressing the
lack of (electro)maturity in iPSC-derived nociceptor cultures.
The model was challenged with agonists (capsaicin, allyl iso-
thiocyanate [AITC], ATP, and 42°C heat) as well as the inflam-
matory mediator TNF-a where all except AITC resulted in an
elevated firing rate. Additionally, the researchers screened FDA-
approved compounds labeled for other PNS and CNS diseases,
demonstrating that their model can be used to identify potential
analgesic candidates from compound libraries. The efficacy of
the compounds was measured using a Z' assay quality metric, a
statistical parameter for evaluating high-throughput screening
assays [182], leading to 10 out of 15 compounds being identified
as “hits.”

5.3.7 | DH-Neurons

Some studies have also modeled the transmission step, namely
the synapse between nociceptors and second-order DH neurons
of the spinal cord (Table 5) [169, 172, 183]. One study devel-
oped a three-compartment PDMS co-culture system involving
mouse DRG and DH neurons [169]. The middle compartment
contained DRG cell bodies, while the side compartments housed
DRG axons and DH neurons, respectively. Electrical stimulation
of the DRG cell bodies and axons resulted in increased electrical
activity in DH neurons, as observed through calcium imaging,
indicating that the synapse is functional. The administration
of NMDAR and AMPAR antagonists in the DH compartment
silenced DH neuron responses, suggesting that signal trans-
mission via glutamate release is indeed maintained in vitro.
Additionally, axotomy, that is, axon damage, was performed in
the DRG axon compartment, and subsequent electrical stimula-
tion led to increased firing of DH neurons. The same research
group with the same cellular model has shown that administer-
ing NaV1.7 and NaV1.8 antagonists to the DRG neurons reduces
synaptic transmission, but that is not the case when DRG axons
are axotomized [183]. These findings suggest that changes in
the excitability of sensory neurons following axotomy enhance
synaptic transmission and the excitability of DH neurons, high-
lighting the importance of the DRG-DH neuron axis in pain
signaling.

Taking it a step further, a groundbreaking study established a
circuit of four organoids aggregated into an assembloid, mim-
icking the pain pathway in embryos (Table 5). This pathway
includes transmission from nociceptors to DH neurons, fur-
ther connecting to thalamic neurons to simulate signal relay
to the brain, and finally to cortical neurons where pain is

processed and perceived [176]. They demonstrated synchro-
nous wave-like activity across all organoid regions, both spon-
taneously and in response to stimuli. Using CRISPR-mediated
gene editing, they created'disease mode' assembloids with
knockout and gain-of-function pathogenic SCN9A (encoding
for NaV1.7) variants in sensory organoids. In SCN9A knockout
assembloids, the four organoids still displayed electrical activ-
ity but were no longer synchronized, while SCN9A gain-of-
function assembloids exhibited hypersynchrony. These results
highlight the capability to capture emergent and dysfunction
properties that cannot be seen in single organoids, thus open-
ing up the possibility of addressing disease pathophysiology at
a circuit level [176].

For research groups with limited capacity to develop their
own models, companies exist that offer in vitro pain model
products with compartmentalized sensory neurons cultured
on classical MEA chips with 48 electrodes. The cells express
specific markers and functional activity, including thermore-
active properties and responsiveness to pain stimulus com-
pounds [184]. The market availability of more complex and
physiologically relevant co-culture models remains limited.
Apart from innervated skin models [154, 155], there is still no
widely available co-culture model of nociceptive circuits, leav-
ing a gap for more representative pain models in the market.
This is likely due to the scientific readiness of such models not
yet being fully established.

By examining the interactions between nociceptors and various
cell types in co-culture models, researchers can gain insights
into how pain signals are modulated dynamically in different
cellular microenvironments. These models are invaluable for
studying the molecular mechanisms underlying pain and for
developing potential therapeutic interventions. As research con-
tinues to evolve, co-culture and compartmentalized models will
remain essential tools in the quest to decode the complexities of
pain and improve pain management strategies.

6 | Outlook

While the field of pain sensitization research has evolved sig-
nificantly in the past years due to the development of innovative
technologies, there is still a large unmet need to further improve
our mechanistic understanding and tools for human relevant
research and drug testing. The nociceptive pain phenomenon
involves a diverse array of cell types, whereas current models
have mainly focused on single-cell systems of nociceptors, and
some on two-cell co-cultures but very few on higher complexi-
ties [166, 175].

These in vitro models can still be considered limited in repli-
cating the complexities of human pain pathways. To overcome
this, advancement towards replicating more complex parts
of the nociceptive circuit is needed. As an example, there is a
crosstalk between nociceptors with non-neuronal cells of the
peripheral tissue and the CNS via the mediated release of pro-/
anti-inflammatory mediators and neuropeptides, but addi-
tional physiological properties such as fluid flow, mechanical
stimulation, aging, and co-morbidities further affect the pain
sensitization pathway. Therefore, incorporating more cellular
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interactions and a biomimetic microenvironment can lead to
emergent properties, making realistic cell-cell interactions cru-
cial for more accurate predictions of drug effects.

An ideal model would include mimicking cellular interactions
during the transduction step between nociceptors and non-
neuronal cells from peripheral tissue, as well as the transmis-
sion step between nociceptors and second-order neurons and
non-neuronal cells in the spinal cord within one platform. To
our knowledge, no studies have developed such a model, likely
due to the multitude of challenges involved, including optimiz-
ing a culture medium, managing cells that proliferate with no-
ciceptors that do not, and building the right compartmentalized
system to maintain a controlled environment. However, an ideal
model should also be reproducible. Incorporating more com-
plexity increases the risk of variability between cultures, mak-
ing the model less predictive. Therefore, all culture protocols
for different cell populations must be well optimized to ensure
robustness and to closely match the functional and genetic char-
acteristics of their corresponding primary cells.

Transitioning to more representative 3D models is highly desir-
able, as demonstrated by the innovative work of Kim et al. in
their report of a four-organoid assembloid [176]. Ideally, these
models would involve complex organoids/spheroids that mimic
the spatial configuration of cells within nociceptive circuits.
For example, two organoids could replicate respectively the cel-
lular populations of peripheral tissue and the spinal cord, both
connected by nociceptor axons organized in 3D bundles, like
in vivo conditions. However, these 3D cellular models can have
inconsistent sizes, shapes, or structures, so the reproducibility
challenge must be addressed [185]. Interfacing these 3D models
presents challenges as well, such as the need for performant 3D
MEAs (which are currently limited) instead of traditional planar
MEA chips.

Adding additional sensors to the current system that usually
only contains electrophysiology sensors allows us to acquire
critical complementary informations that would aid our un-
derstanding of pain sensing phenomena. Multiparametric bio-
sensing is essential for obtaining a deeper understanding of the
complex nociceptive processes; for this, existing biosensors can
be integrated [186, 187] with pro-or anti-inflammatory media-
tors to track them at interfaces between nociceptor axons and
non-neuronal cell populations, allowing for richer readouts.

iPSCs have revolutionized human pain research, and future
endeavors will allow patient-specific and/or gene variant muta-
tion models by patient-derived nociceptors in combination with
additional key cell populations to address the human heteroge-
neity of pain sensing. For instance, a nociceptor monoculture
derived from a patient with chronic neuropathic pain was devel-
oped and tested with lacosamide, an FDA-approved compound
for the treatment of seizures. Its off-label use as an analgesic
in these in vitro tests showed efficacy, and upon administra-
tion, the patient reported reduced pain according to their self-
assessment [188]. Extending this type of study to co-culture
models would be even more informative about the specificity of
a patient's nociceptive circuitry. This approach opens numerous
future opportunities for conducting “clinical trials-on-chip”. By
stratifying patients suffering from different pain pathologies,

with different ages, genders (acknowledging known gender dif-
ferences in pain sensitivity and responses to pain drugs [189])
or ethnicities into subgroups according to the electrophysiologi-
cal readouts and ideally readouts from other biosensors of their
cultured nociceptive circuits by using high-resolution technol-
ogy like CMOS MEA chip. This would allow biopharmaceutical
companies to screen more targeted pain medications, ensuring
the right concentration of the right drug for different types of pa-
tients. Ultimately, in vitro pain models are not just tools for drug
screening, they can enhance our mechanistic understanding of
multicellular interactions within the human pain circuit and
help decode its physiological complexity. With continued inno-
vation, leveraging these models may 1day help liberate billions
from the burden of chronic pain.
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