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Abstract 

Small intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intesti-
nal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies 
evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is 
known about their functional responses to specific pathogens or their associated virulence factors. Here, we report 
that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic 
Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these 
enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete 
inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an  F4+ ETEC strain. 
Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising 
model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the 
design of veterinary therapeutics aimed at improving gut health.
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Introduction
Enterotoxigenic E. coli (ETEC) are a major cause of 
postweaning diarrhoea in piglets and result in severe 
economic losses in swine husbandry due to increased 
mortality, reduced growth rates and elevated medication 
[1]. Estimates range from EUR 40–314 per sow depend-
ing on the severity of the disease [2, 3]. Upon ingestion, 
ETEC reach the small intestine and adhere to the epithe-
lium through the interaction of its fimbriae with fimbrial 
receptors on the apical membrane of the enterocytes. The 
most prevalent fimbriae expressed by ETEC causing post-
weaning diarrhoea are F4 and F18 fimbriae, which mainly 
bind to diverse glycoproteins, such as aminopeptidase N 
and fucosyl-containing glycosphingolipids, respectively 
[4, 5]. This results in the secretion of heat-labile (LT) and 

heat-stable (STa, STb) enterotoxins, which disrupt the 
water and electrolyte balance, ultimately leading to the 
watery diarrhoea characteristic of ETEC infections [6, 7]. 
In piglets, the enterotoxin STb plays an important role in 
eliciting diarrhoea during the acute phase of the infec-
tion. In turn, the host intestinal tissues, including the 
small intestinal epithelium, respond to ETEC infection by 
producing pro-inflammatory mediators, such as interleu-
kin-8 (IL8, CXCL8) and IL6, to enable a rapid induction 
of innate immune responses and subsequent protective 
secretory IgA responses [8–10].

Despite this progress in understanding the molecu-
lar pathogenesis of ETEC in piglets, many facets, such 
as the impact of ETEC and its enterotoxins on the func-
tion of intestinal epithelial cells, remain unresolved. This 
is primarily due to a lack of effective in vitro and in vivo 
models. Available cell lines fail to represent the cellular 
complexity and functionality of the epithelium. Explants 
such as precision cut intestinal sections are an alternative 
model, however these are only applicable for short term 
experiments [11]. Animal experiments such as ligated 
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loops or perfused intestinal segments on the other hand 
are quite labour-intensive and pose a range of technical 
difficulties [12]. Hence, there is a need for more com-
plex in vitro based research, such as the recently devel-
oped techniques for the culture of primary intestinal 
epithelial stem cells. This system allows for the develop-
ment of complex three-dimensional intestinal epithelial 
structures grown in a laminin/collagen-rich hydrogel 
(Matrigel), called enteroids. Utilization of enteroids for 
research has dramatically increased since the discov-
ery of  Lgr5+ intestinal stem cells and the development 
of human and murine culture techniques [13]. A major 
advantage of these enteroid cultures over classic intesti-
nal epithelial cell lines is the confirmed presence of the 
different epithelial cell lineages, making it a much more 
representative model for the in  vivo situation [14]. Fur-
thermore, enteroids, which are grown from isolated 
intestinal crypts, retain segment specificity, a feature of 
particular interest for host–pathogen interaction studies 
[15, 16]. However, in contrast to human and murine stud-
ies, literature on porcine enteroids is scarce. The develop-
ment and cellular composition of the porcine enteroids 
has been described [14, 17–20], but to the best of our 
knowledge functional responses of enteroids towards 
porcine pathogens have only recently been reported [21–
25]. Here, we build further on previous studies to report 
the development of porcine enteroids from all segments 
of the small intestine in different culture media, the gen-
eration of enteroid monolayers and focus on the func-
tional responses elicited by ETEC-derived enterotoxins.

Materials and methods
Bacterial cultures and enterotoxin production
To produce the ETEC enterotoxins (mixture of LT, 
STa and STb), the GIS26 ETEC reference strain 
and an isogenic enterotoxin knock out strain 
(GIS26ΔestAΔestB:KAN; toxin negative strain) were 
grown as described [8]. Briefly, single colonies on a brain 
heart infusion (BHI) agar plate were grown in CAYE 
medium at 37  °C while shaking at 200 revolutions per 
minute (rpm) for 24  h. Next, the bacteria were cleared 
from the culture medium with two centrifugation steps 
(5000  g; 20  min; 4  °C). After the second centrifugation 
step, the supernatant was filtered with a 0.22 µm low pro-
tein binding filter (Novolab, Geraardsbergen, Belgium). 
This sterile solution was aliquoted and stored at −20 °C 
for later use.

Wnt, R‑spondin and Noggin (WRN) conditioned medium
The L-WRN cell line (ATCC, Manassas, VA, USA), 
derived by transfecting the mouse L-Wnt3a fibro-
blast-like cell line with an R-spondin 3 and noggin co-
expressing vector was maintained following the ATCC 

guidelines in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco, Waltham, MA, USA) supplemented 
with 10% FBS (Sigma, St. Louis, MO, USA); 0.5 mg/mL 
Geneticin (G-418; Gibco); 0.5 mg/mL hygromycin B (Inv-
itrogen, Carlsbad, CA, USA) at 37  °C, 5%  CO2 and 90% 
humidity. At 90% confluency the cells were washed with 
sterile phosphate buffered saline [PBS, room tempera-
ture (RT)], detached with trypsin buffer (0.25% trypsin 
(Gibco), 100 U/mL penicillin, 100  μg/mL streptomycin 
and 1% Versene in PBS) for 10 min at RT and passaged to 
new culture flasks at a 1:10 ratio.

To prepare L-WRN conditioned medium, L-WRN cells 
were cultured with cell culture medium lacking G-418 
and hygromycin B (collection medium) as described pre-
viously [26]. The cell culture medium was replaced every 
other day until the cells became fully confluent (usually 
3–4  days). The collection medium was then refreshed 
and collected after incubating the cells for another 24 h. 
This was repeated three times. The collected medium 
was centrifuged at 3000 g, 4 °C for 15 min to remove any 
remaining cells, mixed with an equal volume of intestinal 
epithelial stem cell (IESC; see below) medium to produce 
L-WRN conditioned (50%) IESC medium, aliquoted and 
stored at −20 °C.

Isolation of small intestinal crypts
Small intestinal crypts were isolated from 6- to 10-week-
old piglets as previously described with minor modifi-
cations [14, 27]. After euthanasia, the abdominal cavity 
was opened and the small intestine was located. Ten cm 
sections of duodenum, jejunum without Peyer’s patches 
and ileum were isolated and immediately put in cold, 
sterile PBS. Each piece was rinsed well in PBS supple-
mented with 100 U/mL penicillin and 100 μg/mL strep-
tomycin to wash away intestinal contents. Sections of ~ 
5 cm were inverted and then tied to a wooden swab of 
similar length using surgical suture wire. The ileal tissue 
was processed to remove the Peyer’s patches. The intes-
tinal tissues were then incubated in 35  mL cold disso-
ciation buffer 1 (30 mM Ethylenediaminetetraacetic acid 
(EDTA, VWR, Radnor, PA, USA), 1.5 mM dithiothreitol 
(Sigma), 6  µM Rho-associated kinase (ROCK) inhibitor 
(Y-27632; Sigma) in PBS) for 30 min on ice on an orbital 
shaker. Every 5  min the tissues were shaken vigorously 
for 10–15 s. After 30 min the samples were transferred to 
35 mL warm (37 °C) dissociation buffer 2 (30 mM EDTA, 
6  µM Y-27632 in PBS) for 10  min on an orbital shaker. 
Next, the tissue was transferred to cold, sterile PBS and 
incubated for 5  min, while the shaking frequency was 
increased to every 1–2 min. To assess crypt detachment 
and purity, a droplet of this suspension was examined 
under a light microscope. After 5 min the tissue samples 
were transferred to fresh, cold PBS and the above steps 



Page 3 of 12Vermeire et al. Vet Res           (2021) 52:94  

were repeated until single crypts with minimal debris 
were present. Upon choosing the best fraction, crypts 
were counted, centrifuged at 200  g for 5  min and then 
resuspended in 1 mL cold, sterile PBS.

Three‑dimensional enteroid culture
The isolated crypts were centrifuged at 200  g, 4  °C for 
5 min and were resuspended on ice in Matrigel (growth 
factor reduced, phenol red free, Corning, Corning, 
NY, USA) containing a growth factor mix (5.5  µg/mL 
recombinant (rec) human (hu) R-spondin (R&D Sys-
tems, Minneapolis, MN, USA), 1.65 µg/mL rec hu Nog-
gin (Peprotech, Rocky Hill, NJ, USA), 1.65  µg/mL rec 
hu Wnt3a (R&D Systems), 825  ng/mL rec hu epider-
mal growth factor (EGF) (R&D Systems), 8.25 µM A83-
01 (Tocris Bioscience, Bristol, UK), 50  µM SB202190 
(Sigma), 16.5 mM nicotinamide (Sigma), 165 nM Gastrin 
(Sigma), 165  µM Y-27632 (Sigma), 8.25  µM LY2157299 
(Selleckchem, Houston, TX, USA), 41  µM CHIR99021 
[Cayman Chemicals, Ann Arbor, MI, USA)]. Per well a 
50 µL droplet of the Matrigel containing 75 crypts was 
slowly brought onto a pre-warmed (37 °C) 24-well plate, 
allowing the formation of a small dome in the centre 
of the well. Plates were placed at 37  °C for 30  min to 
allow the Matrigel to polymerize upon which 500 µL of 
IESC medium (Advanced Dulbecco’s modified Eagle’s 
medium/Nutrient mixture F-12 (Gibco), 1 × N-2 sup-
plement (Gibco), 1 × B-27 Supplement (Gibco; no Vit 
A), 10  mM 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES, Gibco), 1% Glutamax (Gibco) and 1% 
P/S) supplemented with 500  ng/mL R-spondin, 100  ng/
mL Noggin, 100  ng/mL Wnt3a, 50  ng/mL EGF, 0.5  µM 
A83-01, 10 µM SB202190, 10 mM nicotinamide, 10 nM 
Gastrin, 10 µM Y-27632, 0.5 µM LY2157299 and 2.5 µM 
CHIR99021. Crypts were subsequently cultured at 37 °C, 
5%  CO2 and 90% humidity. After 2 days fresh growth fac-
tor mix was added to the cultures in a similar concentra-
tion as the complete IESC medium and another 2  days 
later the complete IESC medium was replaced. For most 
experiments, crypts were cultured in L-WRN-condi-
tioned IESC medium supplemented with 50 ng/mL EGF, 
0.5 µM A83-01, 10 µM SB202190, 10 mM nicotinamide, 
10 nM Gastrin, 10 µM Y-27632, 0.5 µM LY2157299 and 
2.5 µM CHIR99021. Alternatively, enteroids were grown 
using Intesticult organoid growth medium (human, 
Stemcell Technologies). Every 2 days this culture medium 
was replaced. This procedure was repeated until enter-
oids were passaged.

Matrigel domes were washed twice with cold, sterile 
PBS, followed by addition of 0.5 mL cold cell recovery 
solution (Corning). This was done forcefully to break up 
the dome. Plates were incubated for 30 min on ice and 
the enteroids were collected, centrifuged (200 g, 5 min, 

4  °C) and resuspended in 1  mL cold PBS containing 
10  µM Y-27632. The enteroids were then fragmented 
by passing them twice through a 27 Gauge needle with 
a syringe. A fraction of the fragments was spun down 
(200 g, 5 min, 4 °C), resuspended in 50 µL Matrigel con-
taining the growth factor mix mentioned above, plated 
on a pre-warmed (37  °C) 24-well plate and placed at 
37 °C for 30 min to allow polymerisation. Next, 500 µL 
complete IESC, L-WRN-conditioned IESC or Intesti-
cult medium was added to each well. Enteroid devel-
opment from small intestinal crypts and upon passage 
was evaluated using an Olympus IX81 light microscope 
(Olympus, Tokyo, Japan).

Monolayers
Microtiter wells were coated with 2.5  μg/cm2 collagen 
IV (mouse, corning) for 1  h at RT, washed twice with 
PBS and air-dried. Fragmented enteroids obtained dur-
ing passage were resuspended in medium and plated on 
collagen IV coated wells. Alternatively, further disso-
ciation was achieved by incubation with 0.25% trypsin 
in PBS at 37  °C for 10 min while repeatedly pipetting. 
Cells were then plated at a concentration of 25  000–
40  000 cells/cm2. Confluence was achieved after 
4–7 days depending on the growth medium.

SOX9 staining
The presence of SOX9, a marker for progenitor and 
stem cells [28], in enteroid cultures was evaluated by 
immunocytochemistry. Enteroids were washed twice 
with sterile PBS and subsequently fixated for 30  min 
with 4% paraformaldehyde at RT. After each incuba-
tion step, cells were repeatedly washed twice with ster-
ile PBS. Upon fixation the enteroids were treated with 
ammonium chloride (50  mM in PBS) for 30  min at 
RT and then permeabilized with 0.1% Triton X-100 in 
PBS again for 30  min at RT. Next, the enteroids were 
blocked with a 5% BSA solution for 1 h at RT and the 
rabbit anti-SOX9 antibody (Millipore, Burlington, 
MA, USA) or irrelevant rabbit IgG (both at 1 µg/mL in 
PBS + 0.1% goat serum) was added overnight at 4  °C. 
Before adding the Fluorescein isothiocyanate conju-
gated anti-rabbit IgG (Sigma; 1/100 dilution in PBS), 
the wells were washed five times with sterile PBS. 
Next, the cells were incubated for 2  h at RT with the 
secondary antibody and subsequently washed 5 times. 
The nuclei were counterstained with Hoechst (10  µg/
mL) for 10 min at RT, the enteroids were covered with 
mounting liquid and were imaged with an Olympus 
IX81 fluorescence microscope. Images were processed 
with ImageJ.
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Swelling assay
Enteroid fragments were cultured in Matrigel until sphe-
roids or less complex enteroids developed. At that devel-
opmental stage, the enteroid cultures were washed with 
IESC medium (500 µL/well; 37  °C) and subsequently, 
cell culture medium was added containing guanylin 
(10 µM) or bacterial culture supernatant (1/20 dilution) 
with or without a mixture of the ETEC enterotoxins 
(LT, STa and STb), produced by the GIS26 ETEC refer-
ence strain or the isogenic enterotoxin knock out strain 
(GIS26ΔestAΔestB:KAN; toxin negative strain), respec-
tively. The enteroids were then monitored during two 
hours using a live-cell microscope (Olympus IX81) with 
controlled temperature (37  °C),  CO2 (5%) and humidity 
(100%). Five to ten enteroids/condition were selected at 
random and every 10  min the enteroids were imaged. 
The resulting time-lapse was analysed with ImageJ. At 
every time point, the surface area of the enteroids was 
measured manually. The relative area increase at every 
timepoint was then calculated by dividing the area meas-
ured at a certain timepoint by the area of the initial state 
(T = 0) and multiplying by 100. Stimulated enteroids 
were further incubated for 24 h, upon which the super-
natant was collected and the Matrigel dissolved using cell 
recovery solution as described above. After centrifuga-
tion (200  g, 5  min, 4  °C) to separate enteroids from the 
dissolved Matrigel, all fractions were stored at −20 °C.

IL8 ELISA
To assess the secretion of pro-inflammatory mediators as 
a response of the enteroids to enterotoxins, an IL8 ELISA 
(DuoSet, R&D systems) was performed on the collected 
supernatant and Matrigel domes following the manu-
facturer’s guidelines. To calculate the IL8 concentration 
in the samples a calibration curve was fit with Deltasoft 
software.

Bacterial adhesion assay
Enteroid monolayers were grown as described above 
for 5–7  days to 100% confluence. The cells were 
washed once with sterile PBS at 37  °C and once with 
culture medium without antibiotics upon inoculation 
with ETEC. The wild type ETEC strain GIS26 and an 
F4 deficient mutant strain GIS26∆faeG were grown 
overnight at 37  °C in 5  mL BHI medium while shak-
ing at 180  rpm [29]. Culture density was measured at 
 OD660 and verified by overnight plating on BHI agar 
plates and colony count. After washing with sterile 
cold PBS, the bacteria were added to the monolayers in 
culture medium at a multiplicity of infection (MOI) of 
10 in duplicate and incubated for 2 h. Next, the excess 
bacteria were removed by washing the cultures three 
times with PBS, after which the cells were detached 

using 0.25% trypsin in PBS for 30  min at 37  °C. Sub-
sequently, a serial dilution was plated on BHI agar and 
after overnight incubation at 37 °C the number of col-
ony forming units (CFU) were counted.

Statistical analysis
Statistical analysis was performed with the Kruskal–Wal-
lis Test or the Mann–Whitney U test for the independ-
ent samples of the ELISA or bacterial adhesion results 
respectively, in the R 3.4.0 or Prism 6 software package 
with the significance level set to p < 0.05.

Results
Porcine small intestinal organoids develop from duodenal, 
jejunal and ileal crypts
The culture of small intestinal organoids from young and 
adult pigs was recently developed as a model to study the 
function of the intestinal epithelium [14, 17]. Now, enter-
oid cultures are available for many other animal species, 
including horses, cattle, poultry and dogs [19, 30, 31]. We 
confirmed the development and growth of porcine enter-
oids from crypts isolated from the jejunum (Figure 1A). 
One day after isolation, crypt stem cells developed into 
small spheroid structures with a pseudo-lumen. These 
structures grow until day 3–4 when more complex struc-
tures begin to form and irregularities or buds are present. 
These buds further develop into more branched struc-
tures until eventually full-grown crypt-like structures can 
be distinguished. These structures keep growing until day 
14 of culture with many crypt-like structures protruding 
from the central body into the Matrigel matrix. To main-
tain the enteroid cultures, they were passaged by frag-
mentation at day 6 or 7 (depending on the development 
and density of the enteroids). Following this protocol, the 
enteroids could be cultured for up to 13 passages with-
out any apparent changes in enteroid growth kinetics and 
morphology.

Recent studies report the use of different culture media 
to maintain porcine enteroids. Here, we compared IESC 
medium [14], a commercial Intesticult organoid growth 
medium [22] and L-WRN-conditioned culture medium 
to culture and maintain porcine jejunal enteroids [19, 26]. 
As shown in Figures 1B, C, we confirmed that L-WRN-
conditioned IESC medium and Intesticult also sup-
ported the development of enteroids from jejunal crypts, 
closely resembling their development in complete IESC 
medium. While the enteroids cultured in L-WRN con-
ditioned IESC medium showed similar growth kinetics 
as those cultured in complete IESC medium, the enter-
oids cultured in Intesticult displayed an accelerated 
growth as compared to the other tested media, having 
crypt-like protrusions after only 4  days post-passage. 
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Figure 1 Development of porcine enteroids from small intestinal crypts. A Enteroids cultured using IESC or (B) L-WRN-conditioned IESC 
medium, respectively. Images were taken from day 1 until day 14 and are representative for enteroid development from jejunal crypts of 9 
piglets. C Enteroids cultured using Intesticult organoid growth medium were followed from day 0 until day 4 and are representative for enteroid 
development from jejunal crypts of 4 piglets. D Comparison of enteroid cultures originating from duodenal, jejunal and ileal crypts. Images 
represent enteroids 6 days after passaging and are representative of enteroid cultures from crypts obtained from duodenum (n = 4), jejunum 
(n = 10) and ileum (n = 8). Scale bar equals 100 µm.
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Of note, jejunal enteroids cultured in Intesticult orga-
noid growth medium did not show any swelling when 
stimulated with guanylin or enterotoxin-containing bac-
terial culture supernatant (data not shown). This seems 
to indicate that Intesticult grown enteroids are less dif-
ferentiated than the enteroids grown with L-WRN condi-
tioned medium. Therefore, enteroids cultured in L-WRN 
conditioned medium were used for the functional assays. 
Previous studies have shown the development of cul-
tures from jejunum and ileum using L-WRN conditioned 
medium. Here, we show that this medium also supports 
the growth of duodenal crypts into enteroids (Figure 1D) 
[17–19, 22].

Porcine enteroids mimic the response of the small intestine 
to ETEC‑derived enterotoxins
We confirmed that crypts isolated from porcine duode-
num, jejunum and ileum develop into complex enteroids 
similar to previous studies in mice, human and other 
species [13, 19, 22]. To further evaluate the functionality 
of the model, the response of these enteroids to enteric 
pathogens was studied in the context of an infection 
with ETEC. To this end, the response of porcine enter-
oids to ETEC-derived enterotoxins, which disrupt the 
water and electrolyte balance in the gut resulting in fluid 
secretion to the intestinal lumen, was studied in a swell-
ing assay [6]. The latter is a robust method to assess the 
ability of the epithelium in the enteroids to secrete and 
absorb components to and from the pseudo-lumen [32, 
33]. To assess if porcine enteroids swell in response to 
enterotoxin stimulation as well as to evaluate segment-
specific responses, an ETEC-derived enterotoxin mixture 
was added to the enteroid cultures grown from crypts 
isolated from different parts of the small intestine. After 
administration, the swelling of individual enteroids was 
monitored during 120  min using live-cell microscopy. 
As a positive control, the known secretagogue guanylin 
of which the STa enterotoxin mimics the function, was 
added to the cultures. Figure  2A and Additional file  1 
clearly show the swelling of an ileal spheroid upon gua-
nylin stimulation. A noteworthy detail is the change in 
the thickness of the epithelial layer between timepoint 0 
and T110. At the latter time point the epithelium is much 
thinner and probably stretched to its limits. As shown in 
Figure  2B, spheroids derived from duodenum, jejunum 
and ileum show a clear and rapid increase in volume in 
response to stimulation with guanylin as compared to 
unstimulated enteroids. Similar to guanylin stimula-
tion, spheroids also increased in size upon exposure to 
ETEC-derived enterotoxins as compared to enteroids 
stimulated with bacterial culture supernatant obtained 
from an enterotoxin-negative isogenic ETEC deletion 
mutant strain. This enterotoxin-mediated swelling was 

most pronounced in jejunal spheroids (Figure 2C). Dur-
ing the swelling assay however some spheroids suddenly 
collapse, as the epithelial layer cannot stretch any fur-
ther and hence ruptures and releases the fluids inside the 
pseudo-lumen. This so-called bursting can be noticed at 
80 min after stimulation of jejunal enteroids (Figure 2D; 
Additional file  2). Enteroid bursting in swelling assays 
has also been observed in previous studies with murine 
and human enteroids [32]. Interestingly, the rupture of 
the epithelial layer is reversible as enteroids swell again at 
later time points (Figure 2D).

Previous experiments have shown that porcine intes-
tinal epithelial cells secrete pro-inflammatory mediators 
upon ETEC infection [9]. To assess if jejunal enteroids 
respond in a similar manner, they were stimulated with 
ETEC-derived enterotoxins for 24  h. At this timepoint, 
the culture medium and the Matrigel dome were col-
lected and the IL8 concentration was determined by 
ELISA. Bacterial culture supernatant with enterotox-
ins (WT) triggered IL8 secretion by jejunal enteroids as 
compared to guanylin stimulation (Figure  2E, F). Bac-
terial culture supernatant without enterotoxins (toxin 
negative) did not trigger significant IL8 secretion by the 
enteroids.

Development of porcine two‑dimensional monolayers 
from small intestinal organoids
Despite the many advantages of enteroids, a major 
limitation of these 3D cultures in the study of host–
pathogen interactions is the inaccessibility of the api-
cal surface of the epithelium. To facilitate access to the 
apical side of the intestinal epithelial cells, 2D-mon-
olayers were developed. Previous studies in murine, 
human and porcine enteroids have shown that mon-
olayer formation can be achieved on a variety of sur-
face coatings, including Matrigel, collagen and agarose 
[18, 34]. Here, we assessed the formation of monolay-
ers when seeding single cell suspensions from duo-
denum, jejunum or ileum on collagen type IV-coated 
wells. These quickly attach to the collagen-coated 
surface and form small patches which then further 
expand outward forming confluent monolayers (Fig-
ures  3A  and B). Interestingly, cells within these mon-
olayers retained the ability to self-organise into 3D 
enteroids in Matrigel, even after another round of pas-
saging as monolayers, implying the continued presence 
of intestinal epithelial stem cells within these cultures 
(Figure 3C).

To further verify the presence of stem and progeni-
tor cells, we stained jejunal enteroids and monolay-
ers for SOX9, a transcription factor which modulates 
proliferation and development of these crypt-residing 
cells (Figure  3D). Although small spheroids almost 
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Figure 2 Porcine enteroids mimic the response of the small intestine to ETEC‑derived enterotoxins. Spheroids derived from duodenum, 
jejunum and ileum 6 days after passaging were stimulated with enterotoxins or guanylin and imaged using live-cell microscopy. The surface 
area of the spheroids was measured using ImageJ. A Representative images displaying ileal spheroid swelling induced by guanylin (10 µM) at T0, 
T50 and T110 upon administration. B, C The average relative area increase of the spheroids was plotted in function of the time after enterotoxin 
administration. (n = 3 for all tissues). D Spheroid bursting upon guanylin (10 µM) stimulation. Images are representative for other tissues and 
swelling inducers. Scale bar = 100 µm. Relative IL8 secretion in medium supernatant (E) and Matrigel dome (F) of jejunal enteroids stimulated for 
24 h with bacterial supernatant with (WT) or without enterotoxins (toxin negative) compared to non-immunogenic guanylin (n = 3; Kruskal–Wallis 
test).
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Figure 3 Porcine enteroid monolayer development and interconvertibility with 3D culture. A Growth of jejunal crypts, plated on 
collagen-coated wells, using L-WRN-conditioned medium followed from days 1 to 7. B Comparison of 2D-monolayers from duodenum, jejunum 
and ileum at day 3 after passaging. C Interchange between 2 and 3D cultures and back of jejunal enteroids representative for 3 piglets. D 3D and 
(E) 2D-jejunal enteroid cultures were stained with anti-SOX9 or isotype control antibodies at days 7 and 3 respectively after passage. Images are 
representative for 2 piglets. Scale bar equals 100 µm.
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entirely consist of  SOX9+ cells, larger spheroids and 
more complex enteroids show a less pronounced over-
all SOX9 expression, but with a distinct localization of 
 SOX9+ cells in the buds. When fragmented enteroids 
were cultured on a collagen-coated surface and devel-
oped into monolayers,  SOX9+ cells were clearly pre-
sent. These were mainly localized at the edges of the 
monolayer patches, confirming the outward growth 
mentioned above (Figure 3E).

To address if these monolayers allow adherence of 
ETEC as shown in traditional cell culture using por-
cine intestinal epithelial cell lines, like IPEC-J2 [9, 35], 
confluent enteroid monolayers isolated from jejunum 
or ileum were inoculated with a wildtype F4-fimbri-
ated ETEC strain or an F4-deficient isogenic mutant 
strain. As shown in Figure 4, both jejunal (Figure 4A) 
and ileal enteroid monolayers (Figure  4B) supported 
F4-mediated adhesion of ETEC bacteria.

Discussion
Since the discovery of Lgr5 as a marker for intestinal epi-
thelial stem cells and the development of a method to 
maintain these cells in culture and drive their expansion 
and differentiation, the use of mini-guts or enteroids in 
gastrointestinal research is rising [13]. These enteroids 
are complex 3D structures composed of intestinal epithe-
lial cells and more closely resemble the intestinal archi-
tecture and cellular diversity seen in vivo as compared to 
frequently used intestinal epithelial cell lines, such as the 
Caco-2 (human) or IPEC-J2 (porcine) cell lines. In contrast 
to human and mouse, a handful of papers describe the cul-
ture and development of porcine enteroids [14, 17–20, 27]. 
These reports mainly focussed on identifying different cell 
lineages present in enteroid cultures and the optimization 
of culture conditions. Some recent studies used enteroids 
as a new model to study the interaction of pathogens, such 

as porcine epidemic diarrhoea virus, porcine deltacoro-
navirus, Lawsonia intracellularis and Toxoplasma gondii, 
with the small intestinal epithelium [21–25, 36]. Moreo-
ver, in addition to host–pathogen interactions, enteroids 
provide a valuable model to study stress responses or the 
effects of dietary components [37–39]. Here, we built upon 
these findings to enable the use of these enteroids to study 
the interaction of ETEC with the small intestinal epithe-
lium in piglets. We showed for the first time that porcine 
enteroids developed from crypts isolated from duodenum, 
jejunum and ileum in complete IESC, L-WRN-conditioned 
IESC and Intesticult organoid growth media. Although 
the commercial Intesticult organoid growth medium sup-
ported the culture of porcine duodenal, jejunal and ileal 
enteroids, in our hands, cultures grown with Intesticult 
developed twice as fast as compared to the other two cul-
ture media. However, enteroids cultured with Intesticult 
medium did not swell in response to guanylin or entero-
toxin stimulation, implying that these Intesticult grown 
enteroids seem as such less useful to study the interaction 
of enterotoxins or pathogens with the intestinal epithelium.

Upon infection with ETEC the epithelium releases vast 
amounts of electrolytes and water elicited by secreted 
enterotoxins which results in diarrhoea. The responsive-
ness towards stimulation with ETEC-derived enterotoxins 
was tested in a swelling assay to further assess the function-
ality of the model [32, 33, 40]. Enteroids originating from 
all small intestinal tissues showed an immediate secre-
tory response upon stimulation with guanylin, a known 
endogenous secretagogue. Moreover, duodenal, jejunal 
and ileal enteroids displayed a similar swelling in response 
to stimulation with ETEC culture supernatant contain-
ing enterotoxins as compared to supernatant lacking these 
enterotoxins. Swelling seemed to be most pronounced 
in jejunal cultures. The apical directed transport of ions 
seen in these enteroid cultures, confirms the presence 

Figure 4 F4‑mediated bacterial adhesion on 2D‑enteroid monolayers. A Jejunal and (B) ileal monolayers were grown until 100% confluent 
and infected with ETEC bacteria with (Gis26 WT) or without F4-fimbrae (GIS26∆faeG) at a MOI of 10 in duplicate (n = 3 for jejunum; n = 3 for ileum; 
Kruskal–Wallis test; * p < 0.05).
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of a polarized epithelium, a feature previously reported 
in human enteroids [41]. Additionally, ETEC-derived 
enterotoxins elicit their effect via binding to apical recep-
tors. Hence, the observed enteroid swelling is most likely 
induced by the heat-stable enterotoxins STa and STb. The 
latter are small peptides (2 and 5 kDa, resp.) as compared 
to the heat-labile enterotoxin (84 kDa), and are able to pass 
through the tight junctions and access the apical surface 
in the pseudolumen of the enteroids [6]. Furthermore, the 
ETEC strain used in this assay (GIS26) secretes low levels 
of the heat-labile enterotoxin LT and average to high levels 
of the heat-stable enterotoxins, implying that the observed 
swelling is mainly elicited by the heat-stable enterotoxins 
[42].

The small intestinal epithelium secretes pro-inflamma-
tory mediators, such as IL8, upon ETEC infection [8, 9]. 
Our data show similar responses in the enteroid model. 
The cultures showed an upregulated basolateral IL8 
secretion when exposed to bacterial supernatant contain-
ing enterotoxins. IL8 functions as neutrophil attracting 
chemokine and neutrophils added to human organoid 
cultures are attracted to these organoids and even show 
invasion of the pseudo-lumen [43].

A major disadvantage of enteroids to study host–path-
ogen interactions is the difficulty to access the apical 
epithelium. For instance, Derricott et  al. used basal-out 
enteroids to study Salmonella Typhimurium infection 
[36]. Unsurprisingly, Salmonella could not invade the 
enteroids, as this pathogen invades the host at the api-
cal epithelium. A potential solution might be the use 
of a 2D-monolayer culture. In the current study, mon-
olayers were obtained upon culture of crypts, enteroid 
fragments, or single cell suspensions from duodenum, 
jejunum and ileum applied to collagen-coated surfaces. 
Moreover, 2D-monolayers could be interconverted to 3D 
cultures and back retaining the ability to self-organise 
into complex enteroids, similar to murine enteroid cul-
tures [34]. SOX9 primarily marks stem and progenitor 
cell lineages however around 50% of the Paneth cells also 
express SOX9 [14, 44]. Fluorescence staining revealed 
that the monolayers contained  SOX9+ cells at their edges, 
suggesting that the monolayer patches grown from enter-
oid fragments expand from their edge, similar to what 
has been previously described in primary murine colonic 
epithelial cell cultures [34]. In contrast, upon passage 
 SOX9+ cells appeared scattered throughout the mon-
olayers (data not shown) as recently described for pig 
ileal enteroids [18]. The use of single cells as compared 
to crypts or enteroid fragments might explain this differ-
ent distribution of dividing stem cells. Finally, 2D-enter-
oid monolayers of jejunal and ileal origin supported the 
adhesion of ETEC bacteria demonstrated by the strong 
adhesion of wild type  F4+ ETEC (GIS26) as compared to 

the GIS26∆faeG strain which does not express F4 fim-
briae [29]. These data show that enteroid monolayers are 
a valuable alternative in bacterial adherence studies.

Now that enteroids have been established for 
humans, mice and most farm animals, efforts are 
ongoing to further improve these cultures. One of the 
main limitations as mentioned earlier is the difficulty 
to access the apical surface. In addition to monolay-
ers, recently, human and porcine apical-out enteroids 
were developed where the polarity of the enteroids 
was reversed and the apical surface is easily accessible 
[45, 46]. This will facilitate the study of host–patho-
gen interactions in 3D cultures. The porcine apical-out 
enteroids were obtained from jejunal tissue and further 
research should establish these apical-out cultures from 
the other segments of the small intestine. Another chal-
lenge of working with enteroids is the use of Matrigel. 
The latter is prone to batch-to-batch variability and 
although it is mainly composed of extracellular matrix 
proteins, Matrigel also contains a number of growth 
factors (even in its growth factor reduced format) and 
other proteins which can affect the development and 
responses of the enteroids. The use of more defined 
hydrogels or synthetic scaffolds could solve this issue 
[47]. Finally, a further optimisation of the enteroid cul-
ture would be to include immune cells, stromal cells or 
microbiota to better mimic the in vivo situation.

Taken together, the induced physiological swelling, 
the secretion of IL8 and adhesion of bacteria show that 
enteroids are a valuable and representative model for 
ETEC infection of the small intestinal epithelium. These 
infections still represent a considerable disease burden 
in man and livestock species [7, 48]. Despite extensive 
research, many molecular mechanisms involved in the 
interaction between ETEC and the host small intesti-
nal epithelium remain elusive, primarily due to the lack 
of adequate models for the small intestinal epithelium. 
The recent development of enteroids offers opportuni-
ties to further unravel the molecular crosstalk between 
ETEC and the small intestinal epithelium. Here, we 
aimed to demonstrate the utility of porcine small intes-
tinal organoids to study host–pathogen interactions. 
We showed the development of porcine enteroids 
from duodenal, jejunal and ileal corroborating previ-
ous results [14, 17, 18, 22]. Guanylin and enterotoxin 
stimulation of enteroid cultures induced physiologi-
cal fluid secretion seen as swelling and upon stimula-
tion with bacterial supernatant enteroids secrete the 
chemokine IL8. These findings support data obtained 
from previous models, such as the IPEC-J2 cell line and 
perfused intestinal segments [8, 9], and lay the foun-
dation for further research to elucidate the impact of 
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ETEC-derived enterotoxins on the function of the small 
intestinal epithelium.
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