

Transdermal and transmucosal kinetics using FDC

Created on: 10-10-2019 - Last modified on: 08-11-2019

Contact person

Yorick Janssens

Organisation

Name of the organisation Ghent University (UGent) Department Pharmaceutical analysis Country Belgium Geographical Area Flemish Region

SCOPE OF THE METHOD

The Method relates to	Human health
The Method is situated in	Basic Research
Type of method	In vitro - Ex vivo
Specify the type of cells/tissues/organs	Skin

DESCRIPTION

Method keywords

skin absorption transport kinetics LC-MS

Scientific area keywords

pharmacokinetics toxicokinetics toxicity

Method description

Transport kinetics accross the skin and/or mucosa is investigated using Franz diffusion cells and LC-UV/MS detection of the investigated molecule in the receptor compartment.

Lab equipment

Franz diffusion cell system ; LC-UV/MS.

Method status

Internally validated Published in peer reviewed journal

PROS, CONS & FUTURE POTENTIAL

Advantages

No *in vitro* cell line is used but real *ex vivo* skin or mucosa.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

References

Taevernier L, et al. (2016). Human skin permeation of emerging mycotoxins (beauvericin and enniatins). J Expo Sci Environ Epidemiol. 26(3):277-87.

Taevernier L, et al. (2015). Enniatin-containing solutions for oromucosal use: Quality-bydesign ex-vivo transmucosal risk assessment of composition variability. Int J Pharm. 491(1-2):144-51.

Veryser L, et al. (2014). Quantitative transdermal behavior of pellitorine from Anacyclus pyrethrum extract. Phytomedicine. 21(14):1801-7.

Veryser L, et al. (2016). Mucosal and blood-brain barrier transport kinetics of the plant Nalkylamide spilanthol using in vitro and in vivo models. BMC Complement Altern Med. 16:177.

Coordinated by

