

Functionality Testing by Measuring Urea Synthesis

Created on: 20-03-2019 - Last modified on: 23-07-2025

Contact person

Joery De Kock

Organisation

Name of the organisation Vrije Universiteit Brussel (VUB)

Department Pharmaceutical and Pharmacological Sciences

Specific Research Group or Service In Vitro Toxicology and Dermato-Cosmetology

Country Belgium

Geographical Area Brussels Region

SCOPE OF THE METHOD

The Method relates to	Human health
The Method is situated in	Basic Research
Type of method	In vitro - Ex vivo
Specify the type of cells/tissues/organs	parenchymal liver cells, stem cell-derived hepatocyte- like cells

DESCRIPTION

Method keywords urea liver Scientific area keywords liver research toxicity in vitro cell culture drug development hepatic in vitro model **Method description** Liver functionality can be monitored by the urea synthesis. In culture medium the measurement of urea synthesis relies on a chromogenic reagent that specifically forms a colored complex with urea. The concentration of this complex between urea, o-phthalaldehyde and N-(1-naphthyl) ethylenediamine can be measured colorimetrically at 520nm and is directly proportional to the urea concentration in the sample. Lab equipment Biosafety cabinet; Incubator; 96-well plates; Multiplate reader. **Method status** History of use

Advantages

PROS, CONS & FUTURE POTENTIAL

Quick and easy to use.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

References

Henkens et al. Modulation of CYP1A1 and CYP2B1 expression upon cell cycle progression in cultures of primary rat hepatocytes. Toxicol In Vitro. 2007 Oct;21(7):1253-7

Coordinated by

