

Adult skin stem cell-derived in vitro model of hepatic steatosis

Commonly used acronym: Steatosis model

Created on: 19-03-2019 - Last modified on: 28-02-2022

Contact person

Joost Boeckmans

Organisation

Name of the organisation Vrije Universiteit Brussel (VUB)

Department Pharmaceutical and Pharmacological Sciences

Specific Research Group or Service In Vitro Toxicology and Dermato-Cosmetology

Country Belgium

Geographical Area Brussels Region

SCOPE OF THE METHOD

The Method relates to	Human health
The Method is situated in	Translational - Applied Research
Type of method	In vitro - Ex vivo
Species from which cells/tissues/organs are derived	Human

Type of cells/tissues/organs	Skin-derived adult stem cells
Specify the type of cells/tissues/organs	Human skin-derived hepatic cells

DESCRIPTION

Method keywords

Stem cells

differentiation

Gene expression

in vitro

Lipids

Scientific area keywords

Steatosis

liver

NAFLD

metabolic syndrome

lifestyle

hepatology

Method description

Human skin-derived adult stem cells differentiated towards hepatic cells (hSKP-HPC) are used in this method (R. M. Rodrigues et al., Stem Cells Dev. 23, 44–55 (2014)). These cells are exposed to a cocktail of insulin and glucose at certain concentrations. After 24h of exposure, these cells exhibit a strong induction of lipogenic genes and accumulate neutral lipids. Using this model, potential new antisteatotis and anti-non-alcoholic steatohepatitis (NASH) drugs can be tested for their anti-steatotic potentials. The read-outs for this in vitro disease model are (i) gene expression analysis and (ii)

Lab equipment
Biosafety cabinet;
Flow-cytometer;
RT-qPCR;
Cell culture equipment.
Method status
Still in development
Still in development
PROS, CONS & FUTURE POTENTIAL
Advantages
Fast (24h);
Human-relevant.
Challenges
Lipid load is only +/- 1.5 -2 x fold higher in the steatosis condition vs the control condition
Modifications
Addition of other sugars
Future & Other applications
The main application is located in preclinical drug testing
REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION
References

neutral lipids quantification.

R. M. Rodrigues et al., Stem Cells Dev. 23, 44–55 (2014). R. M. Rodrigues et al., Arch. Toxicol. 90, 677–689 (2016)

Coordinated by

