

Assaying Cellular Viability Using the Neutral Red Uptake Assay

Commonly used acronym: NRU

Created on: 01-03-2019 - Last modified on: 28-02-2022

Contact person

Robim Rodrigues

Organisation

Name of the organisation Vrije Universiteit Brussel (VUB)

Department Pharmaceutical and Pharmacological Sciences

Specific Research Group or Service In Vitro Toxicology and Dermato-Cosmetology

Country Belgium

SCOPE OF THE METHOD

The Method relates to	Human health
The Method is situated in	Basic Research, Education and training, Regulatory use - Routine production
Type of method	In vitro - Ex vivo
Specify the type of cells/tissues/organs	Hepatic cell lines such as HepG2, HepaRG. Other cell lines also possible, e.g. 3T3 mouse fibroblasts.

DESCRIPTION

Method keywords

```
cellviability
```

toxicity

acute toxicity

neutral red uptake

HepG2

Scientific area keywords

in vitro toxicity

viability study

hepatic toxicity

basal toxicity

Method description

The neutral red uptake assay is a cell viability assay that allows *in vitro* quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in *in vitro* toxicology applications.

Lab equipment

```
Incubator (37 \pm 1 °C, 90 \pm 5% humidity, 5.0 \pm 1% CO2/air);

Laminar flow / clean bench / cabinet (standard: "biological hazard");

Water bath (37 \pm 1 °C);

Inverse-phase contrast microscope;

Laboratory balance;
```

96-Well plate spectrophotometer (i.e., plate reader) equipped with 540 \pm 10 nm filter ;
Shaker for microtiter plates ;
Cell counter or hemocytometer ;
Pipettes, pipettors (multichannel and single channel; multichannel repeater pipette);
96-Well flat-bottom tissue culture microtiter plates;
Multichannel reagent reservoir;
Vortex mixer.
Method status
Published in peer reviewed journal
Validated by an external party (e.g. OECD, EURL ECVAM,)
PROS, CONS & FUTURE POTENTIAL
Advantages
Fast;
Accurate;
Cheap.
Challenges
Relatively easy to perform.
REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION
References
Ates, Gamze, Tamara Vanhaecke, Vera Rogiers, and Robim M. Rodrigues. "Assaying Cellular Viability Using the Neutral Red Uptake Assay." Cell Viability Assays: Methods and Protocols (2017): 19-26

Associated documents

NRU Book chapter.pdf

Coordinated by

