Macrophages orchestrate reactive particle segregation, compact aggregates of immune cells and non-immune cells and promote fibrosis-surrounding granulomas. We developed a simple 3D in-vitro model that mimics granuloma formation and categorizes granuloma-inducing inorganic particles. Macrophage

Last updated on: 31-03-2023 - 09:38

Contact: Léa Hiéronimus
Organisation: Université Catholique de Louvain (UCL)
Status: Still in development, Internally validated
We aim to differentiate ovarian cells isolated from postmenopausal ovaries into steroidogenic theca interna cells. For this purpose, cryopreserved ovarian cortex fragments are used to isolate ovarian cells. These cells are cultured on collagen and supplemented with growth factors defined to promote

Last updated on: 20-03-2023 - 13:52

Contact: Hanne Vlieghe
Organisation: Université Catholique de Louvain (UCL)
Status: Published in peer reviewed journal
Generally, our research group aims to study the influence of food parameters (food design, food processing, food composition) on the digestive kinetics of diverse nutrients throughout the upper gastrointestinal tract. For this, we use in vitro digestion protocols. The current method is a semi

Last updated on: 15-02-2023 - 16:08

Contact: Tara Grauwet
Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal
Primary epithelial stem/progenitor cell populations are isolated from the murine lung using fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). Purified epithelial stem/progenitor cells are grown together with mesenchymal cells in Matrigel, a material enriched for

Last updated on: 15-02-2023 - 10:50

Contact: Smole Ursula
Organisation: VIB - UGent
Status: Still in development, Published in peer reviewed journal
Computational neuroscience aims to study the nervous system by mathematical and computer simulations. Computational models can be built on multilevel scales. With the bottom-up approach, the model is built from the same building blocks as observed in human or animal tissue. As such, the functioning

Last updated on: 13-02-2023 - 16:45

Contact: Cannot be disclosed
Organisation: Ghent University (UGent)
Status: Still in development, Published in peer reviewed journal
This method is used to let cells interact for a better simulation of processes occurring in the body. The rational of the method is that monoculture experiments do not capture the complexity of in vivo interactions between different organs. In the most simple setup (published work Nutrients), Caco-2

Last updated on: 09-02-2023 - 16:37

Contact: Amar van Laar
Organisation: Ghent University (UGent)
Status: Published in peer reviewed journal
Ex-vivo tissue explants (precision cut tissue slices) prepared with the Krumdieck Tissue Slicer are living, three-dimensional tissue slices closely resemble the organ from which it is prepared, with all the cell types present in their original tissue-matrix configuration where physiological and

Last updated on: 31-01-2023 - 15:52

Contact: Bella Manshian
Organisation: Katholieke Universiteit Leuven (KUL)
Human Intestinal Organoids (HIOs) are in vitro 3D cell cultures arranged in a crypt-villus structure that incorporate many physiological features of the intestinal epithelium, including the presence of different cell populations (enterocytes, goblet cells, enteroendocrine and Paneth cells). HIOs can

Last updated on: 27-01-2023 - 13:29

Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes. Despite the big burden, there is no effective treatment to restore tendon’s natural composition, due to a lack of understanding of fundamental cell biology. Additionally, translation of novel

Last updated on: 17-01-2023 - 16:22

Organisation: Ghent University (UGent)
Status: Still in development
Intestinal organoids are cultured from intestinal biopsies obtained during routine endoscopy. The stem cell containing crypts are isolated and cultured in a 3D ECM (Matrigel) in the presence of the desired growth factors. The present stem cells will expand and give rise to all epithelial cells of

Last updated on: 11-01-2023 - 16:43

Contact: Bram Verstockt
Organisation: Katholieke Universiteit Leuven (KUL)
Status: Published in peer reviewed journal