

# Functionality Testing by Measuring Urea Synthesis

Created on: 20-03-2019 - Last modified on: 28-02-2022

# **Contact person**

Steven Branson

## Organisation

Name of the organisation Vrije Universiteit Brussel (VUB)

**Department** Pharmaceutical and Pharmacological Sciences

Specific Research Group or Service In Vitro Toxicology and Dermato-Cosmetology

**Country** Belgium

Geographical Area Brussels Region

#### **SCOPE OF THE METHOD**

| The Method relates to                    | Human health                                                        |
|------------------------------------------|---------------------------------------------------------------------|
| The Method is situated in                | Basic Research                                                      |
| Type of method                           | In vitro - Ex vivo                                                  |
| Specify the type of cells/tissues/organs | parenchymal liver cells, stem cell-derived<br>hepatocyte-like cells |

#### **DESCRIPTION**

## **Method keywords**

urea

liver

# Scientific area keywords

liver research
toxicity
in vitro cell culture
drug development
hepatic in vitro model

#### **Method description**

Liver functionality can be monitored by the urea synthesis. In culture medium the measurement of urea synthesis relies on a chromogenic reagent that specifically forms a colored complex with urea. The concentration of this complex between urea, o-phthalaldehyde and N-(1-naphthyl) ethylenediamine can be measured colorimetrically at 520nm and is directly proportional to the urea concentration in the sample.

# Lab equipment

Biosafety cabinet;

Incubator;

96-well plates;

Multiplate reader.

#### **Method status**

History of use

## PROS, CONS & FUTURE POTENTIAL

#### **Advantages**

Quick and easy to use.

# REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

#### References

Henkens et al. Modulation of CYP1A1 and CYP2B1 expression upon cell cycle progression in cultures of primary rat hepatocytes. Toxicol In Vitro. 2007

Oct;21(7);1253-7







